Объяснение:
Имеется два существенно различных задания множеств. Можно либо перечислить все элементы множества, либо указать правило для определения того, принадлежит или не принадлежит рассматриваемому множеству любой данный объект.
Два множества A и B называются равными, если они состоят из одних и тех же элементов, т. е. если каждый элемент множества A принадлежит B и, обратно, каждый элемент B принадлежит A. Тогда пишут A = B.
Пустое множество — множество, не содержащее ни одного элемента. Одноэлементное множество — множество, состоящее из одного элемента. Универсальное множество (универсум) — множество, содержащее все мыслимые объекты.
Пересечением двух множеств, называется третье множество, сформированное из элементов, которые входят в оба первых множества.
Объединением двух множеств A и B называется множество A B, состоящее из тех и только тех элементов, которые принадлежат хотя бы одному из множеств A или B. Пересечением множеств A и B называется множество A B, которое состоит из тех и только тех элементов, которые принадлежат как множеству A, так и множеству B.
а)
(х + 1) м - одна часть
х (м) - другая часть
16 м - всего
1) (х + 1) + х = 16
2х = 16 - 1
2х = 15
х = 7,5 м - меньшая часть
2) 7,5 + 1 = 8,5 м - бОльшая часть.
б)
690 шт. - всего
х шт. - столов
(х + 230) шт. - стульев
1) х + (х + 230) = 690
2х = 690 - 230
2х = 460
х = 230 шт. - столов
2) 230 + 230 = 460 шт. - стульев.
в)
53 чел. - всего
х чел. - девочек
(х + 17) чел. - мальчиков
1) х + (х + 17) = 53
2х = 53 - 17
2х = 36
х = 18 чел. - девочек
2) 18 + 17 = 35 чел. - мальчиков.