Мы видим, что данная функция является сложной, поэтому будем её дифференцировать как сложную.
Формула
d/dx( f(g(x)) ) = f'(g(x)) × g'(x), где в нашем случае f(x) = cos(x), а g(x) = x^x.
Для применения правила дифференцирования сложной функции, заменим x^x новой переменной t.
Дифференцируем
Для упрощения производной запишем х^х как e^( ln(x^x) ).
И опять сложная функция.
Дифференцируем её аналогично:
f(x) = e^x, g(x) = xln(x)
Заменим xln(x) перевенной k:
За правилом производной произведения имеем:
Вычисляем все производные и получаем:
Это и есть ответ.
В решении.
Объяснение:
1.
1)Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
у = х - 3 у = 2х - 1
Таблицы:
х -1 0 1 х -1 0 1
у -4 -3 -2 у -3 -1 1
Согласно графиков, координаты точки пересечения (-2; -5).
2) Любой график пересекает ось Ох при у равном нулю:
у = х - 3; у = 0;
х - 3 = 0
х = 3;
Координаты пересечения графиком оси Ох (3; 0).
2.
1) Любой график пересекает ось Ох при у равном нулю:
у = 1,2х - 24; у = 0;
1,2х - 24 = 0
1,2х = 24
х = 24/1,2
х = 20;
Координаты пересечения графиком оси Ох (20; 0).
2) Любой график пересекает ось Оу при х равном нулю:
у = 1,2х - 24; х = 0;
у = 0 - 24
у = -24;
Координаты пересечения графиком оси Оу (0; -24).
3) Любой график пересекает ось Ох при у равном нулю:
у = -7 + 14х; у = 0;
-7 + 14х = 0
14х = 7
х = 7/14
х = 0,5;
Координаты пересечения графиком оси Ох (0,5; 0).
4) Любой график пересекает ось Оу при х равном нулю:
у = -7 + 14х; х = 0;
у = -7 + 0
у = -7;
Координаты пересечения графиком оси Оу (0; -7).
ответ: из города А в город С можно проехать 6 различными
непонятно - спрашивай
Удачи!