Пусть 1 число - x
Пусть 2 число y
Составим систему. на основе условия
{x+y=13
{xy=36
Выразим из 1 x и подставим во 2
x=13-y
(13-y)y=36
13y-y^2-36=0;
y^2-13y+36=0
D=169-144=25
x1=13+5/2=9;
x2=13-5/2=8/5;
И так, у нас 2 варианта чисел, проверим их, на найдем лишнее, подстановкой в оба уравнения
1) {9+y=13
{9y=36
{y=13-9
{y= 4
Подходит. Так как число может быть только одним, то второе значение x - неподходит
ответ: эти числа 9 и 4
1)2cosx+1=0, cosx=-1/2, x=+-2π/3+2πk, k∈z
2sinx-√3=0, sinx=√3/2, x=(-1)^k*π/3+kπ,k∈z
2) cosx(2-3sinx)=0,sinx=0,x=πk,k∈z
2-3sinx=0, sinx=2/3, x=(-1)^k arcsin2/3+πk,
3)sinx(4sinx-3)=0, sinx=0, x=πk,k∈z
4sinx-3=0 sinx=3/4, x=(-1)^karcsin3/4+πk,k∈z
4)(sin^2(x)=1/2,x=+-π/4+πk,k∈z.
5)6sin^2(x)+sinx-2=0,Sinx=t, 6t^2+t-2=0 , его корни t1=-2/3,t2=1/2,
sinx=-2/3,x=(-1)^(k+1)arcsin2/3+πk,k∈z, sinx=1/2,x=(-1)^kπ/6+πk,k∈z.
6) 3cos^2(x)-7sinx-7=0,Заменим косинус на синус получим
3sin^2(x)+7sinx+4=0, его корни sinx=-8/6- корней нет, sinx=-1, x= -π/2+2πk,k∈z
Объяснение: