А) 3n^2 + n - 4 = n(3n+1) - 4
Если n четное, то n(3n+1) тоже четное, и n(3n+1) - 4 четное.
Если n нечетное, то 3n+1 четное, тогда n(3n+1) - 4 опять четное.
При любом n это выражение делится на 2, то есть оно четное.
Б) 2n^3 + 7n + 3 = 2n^3 + 4n + 3n + 3 = 2n(n^2+2) + 3(n+1)
Второе выражение делится на 3 при любом n.
Разберем первое выражение.
Само число n при деление на 3 может давать остаток 0, 1 или 2.
1) Остаток равен 0, то есть n делится на 3.
Тогда и все выражение делится на 3.
2) Остаток равен 1, запишем так: n = 3k + 1.
Тогда n^2 + 2 = (3k+1)^2 + 2 = 9k^2 +. 6k + 1 + 2 = 9k^2 + 6k + 3.
Оно делится на 3.
3) Остаток равен 2, тогда n = 3k + 2.
n^2 + 2 = (3k+2)^2 + 2 = 9k^2 + 12k + 4 + 2 = 9k^2 + 12k + 6
Оно тоже делится на 3.
Таким образом, при любом n выражение 2n(n^2 + 2) делится на 3.
Значит, и всё выражение 2n^3 + 7n + 3 делится на 3.
Пусть через х дней в первом магазине останется в 3 раза больше, чем во втором,
тогда
12х кг продал первый магазин за х дней
(84-12х) кг осталось в первом магазине через х дней
21х кг продал второй магазин за х дней
(96-21х) кг осталось во втором магазине через х дней
По условию в первом магазине осталось в 3 раза больше, чем во втором:
(84-12х) > (96-21х) в 3 раза
Получаем уравнение:
84-12х = (96-21х)·3
Решаем:
84-12х = 288-63х
63х-12х = 288-84
51х = 204
х = 204:51
х=4
ответ: через 4 дня в первом магазине мяса останется в 3 раза больше, чем во втором.
Пусть скорость второго автомобиля
равен ч км/х, тогда скорость 1 = x+20
км/ч. Время затраченное первым
автомобилистом равно 150/х, а вторым
= 150/x+20. Известно, что первый
автомобилст затратил на весь путь на
15 минут = 1/4/ часа больше. Составим и
решим уравнение
150/х-150/x+20=1/4
600x+12000-600x=x2+20х
12000-х2-20х=0
х2+20x-12000=0
Д=20*20+4*12000=48400
x=(-20-220)/2=-120-не подходит
x=(-20+220)/2=100км/ч - скорость второго
автомобиля
100+20=120 - скорость первого
автомобиля