Построение графика функции методом дифференциального исчисления
Математика онлайн Математический анализ
1) Область определения функции. Точки разрыва функции.
2) Четность или нечетность функции.
y(-x)=
Функция общего вида
3) Периодичность функции.
4) Точки пересечения кривой с осями координат.
Пересечение с осью 0Y
x=0, y=
Пересечение с осью 0X
y=0
3·x4+4·x3+1=0
Нет пересечений.
5) Исследование на экстремум.
y = 3*x^4+4*x^3+1
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = 12·x3+12·x2
или
f'(x)=12·x2·(x+1)
Находим нули функции. Для этого приравниваем производную к нулю
x2·(x+1) = 0
Откуда:
x1 = 0
x2 = -1
Так, как первую или вторую задачу или первую и вторую задачу решили 90+80=170 человек, а всего в олимпиаде участвовали 100 человек, то как минимум обе задачи решили 70 человек. Рассуждая аналогично, получаем, что третью и четвертую. Задачу решили как минимум 30 человек. Но по условию, ни один из участников олимпиады не решил все задачи, а значит, первую и вторую решили 70, а третью и четвертую – 30 человек. Таким образом, награждены были 30 человек.