Проведем отрезок ОС. Он разделит четырехгранник CAOB на два равных прямоугольных треугольника AOC=BOC. Треугольники равны, т.к.сторона OC-общая, AO=BO=Rокружности и угол CAO=углу CBO=90градусов, т.к. радиус проведенный к точке касания образует перпендикуляр к касательной линии. Из равенства треугольников следует равенство углов ACO=BCO. Эти два угла равны, а в сумме они образуют угол C, который равен 18 градусам. Значит угол ACO=BCO=9градусов. Оставшиеся углы AOC и BOC будут равны 180-90-9=81градусу. Угол АОB состоит из углов: AOC и BOC, которые равны между собой, а их значение мы вычислили выше. Значит угол AOB=2*81=162градуса
Определение локального максимума и локального минимума
Пусть функция
y
=
f
(
x
)
определена в некоторой
δ
-окрестности точки
x
0
,
где
δ
>
0.
Говорят, что функция
f
(
x
)
имеет локальный максимум в точке
x
0
,
если для всех точек
x
≠
x
0
,
принадлежащих окрестности
(
x
0
−
δ
,
x
0
+
δ
)
,
выполняется неравенство
f
(
x
)
≤
f
(
x
0
)
.
Если для всех точек
x
≠
x
0
из некоторой окрестности точки
x
0
выполняется строгое неравенство
f
(
x
)
<
f
(
x
0
)
,
то точка
x
0
является точкой строгого локального максимума.
Аналогично определяется локальный минимум функции
f
(
x
)
.
В этом случае для всех точек
x
≠
x
0
из
δ
-окрестности
(
x
0
−
δ
,
x
0
+
δ
)
точки
x
0
справедливо неравенство
f
(
x
)
≥
f
(
x
0
)
.
Соответственно, строгий локальный минимум описывается строгим неравенством