ответ: (2 ;3) , (3;2)
Объяснение:
Честно я не очень понял к чему надо вот это :
x^5+y^5=u^5-5u^3v+5uv^2 ?
Система решается элементарно и без этого.
Пусть :
xy=t
Тогда :
x^3+y^3 = (x+y)*(x^2-xy+y^2) = (x+y)* ( (x+y)^2 -3*xy) =
=5*(25-3t)
x^2+y^2 = (x+y)^2 -2*xy = 25-2t
(x^2+y^2)*(x^3+y^3) = x^5 +y^5 +x^2*y^3 +y^2*x^3 =
= x^5+y^5 +x^2*y^2 * (x+y) = 275 +5*t^2
Таким образом верно равенство :
5*(25-3t)*(25-2t) = 275+5*t^2
(25-3*t)*(25-2t) = t^2+55
625 -50*t -75*t +6*t^2 = t^2+55
570 = 125*t -5*t^2
114 = 25*t -t^2
t^2-25*t +114=0
По теореме Виета : (t1+t2 = 25 ; t1*t1=114)
t1=6
t2=19
1) x+y=5
x*y=6
По теореме обратной теореме Виета , система имеет очевидное решение :
x1=2
y1=3
x2=3
y2=2
2) x+y=5
x*y=19
Очевидно , что для всех x и y
(x+y)^2 >=4*x*y
25>=76 (неверно)
Вывод : решений нет
ответ : (2 ;3) , (3;2)
f'(x)=4/3*(3-x)^3+4x/3*3(3-x)^2*(-1)=(3-x)^2*(4/3*(3-x)-4x/3*3)=(x-3)^2*(4-16/3*x)=-16/3*(x-3)^2*(x-3/4)
Нули производной: x=3, x=3/4.
f'(x) + - -
3/4 3 >x
f(x) возрастает убывает убывает
Отсюда следует, что максимум функции достигается при x=3/4.
При пересечении функции прямой y=m будет более одной точки в том случае, когда прямая y=m лежит ниже максимума f(x) - так она будет пересекать f(x) ровно в двух точках. Отсюда m < f(3/4)
f(3/4)=4/3*3/4*(3-3/4)^3=(9/4)^3=729/64
m<729/64