f(|2x+7|)>f(|x-3|)
Т.к. по условию функция y=f(x) убывает => большему значению аргумента соответствует меньшее значение функции =>
|2x+7| < |x-3|
Так как и левая, и правая части неравенства принимают только положительные значения, то возведем обе части неравенства в квадрат:
|2x+7|² < |x-3|²
(2x+7)² - (x-3)² < 0 слева стоит разность квадратов
(2x+7 - х +3)(2x+7 + x-3) < 0
(x + 10)(3x + 4) < 0
Найдем нули функции (x + 10)(3x + 4) с метода интервалов:
x + 10 - + +
-10-1 1/3
3x + 4 - - +
Видим, что ф-ция (x + 10)(3x + 4) < 0 когда x + 10 и 3x + 4 принимают противоположные по знаку значения,
т.е. на промежутке ( -10 ; - 1 1/3).
ответ: ( -10 ; - 1 1/3)
f(|2x+7|)>f(|x-3|)
Т.к. по условию функция y=f(x) убывает => большему значению аргумента соответствует меньшее значение функции =>
|2x+7| < |x-3|
Так как и левая, и правая части неравенства принимают только положительные значения, то возведем обе части неравенства в квадрат:
|2x+7|² < |x-3|²
(2x+7)² - (x-3)² < 0 слева стоит разность квадратов
(2x+7 - х +3)(2x+7 + x-3) < 0
(x + 10)(3x + 4) < 0
Найдем нули функции (x + 10)(3x + 4) с метода интервалов:
x + 10 - + +
-10-1 1/3
3x + 4 - - +
Видим, что ф-ция (x + 10)(3x + 4) < 0 когда x + 10 и 3x + 4 принимают противоположные по знаку значения,
т.е. на промежутке ( -10 ; - 1 1/3).
ответ: ( -10 ; - 1 1/3)
Пусть х км/ч собственная скорость лодки, до момента встречи лодка была в пуди 2 ч (0,5 ч до выхода плота и 1,5 ч до момента встречи), за это время она путь 2(х+2) км. Скорость плота = скорости течения, за 1,5 ч плот км. Весь путь равен 35 км, получаем уравнение:
2(х+2) + 3 = 35
2х + 4 = 32
2х = 28
х = 28 : 2
х = 14
ответ. 14 км/ч собственная скорость лодки