
и
– среднеарифметическое равно
и при этом
на
меньше двадцати пяти и на
больше семнадцати.
монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на
монет меньше изначального, а у Пети на
монет больше изначального. А значит, вначале у Васи было на
монет больше, чем у Пети.
монет. Тогда у Пети
монет.
монет, а у Пети-II будет
монет. При этом у Пети-II монет в
раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в
раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:



было целым, целой должен быть и результат деления в дроби, а чтобы
было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда
откуда:




было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет
откуда:
2) Число √n должно быть меньше 950, потому что 950^2=902500, то есть 9 повторяется в n и в √n.
3) Число √n не может кончаться на 1, 5 и 6, потому что n^2 кончаются на те же цифры.
4) Нам нужно найти наибольшее число, поэтому начинаем от 948 и идём назад до 912.
5) Если √n начинается на 9, то оно не может кончаться на 3 и на 7. И конечно пропускаем все числа с повторами цифр.
Остаётся немного чисел: 948,943,938,934,932,928,924, 918,914,912. Они все не подходят.
6) Начинаем от 897 и двигаемся дальше.
Довольно быстро находим:
854^2=729316