М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
камила905
камила905
16.08.2022 22:54 •  Алгебра

Укажите вершины параболы ​


Укажите вершины параболы ​

👇
Открыть все ответы
Ответ:
34Юлия2511
34Юлия2511
16.08.2022

Строгие неравенства

{\displaystyle a<b}a<b — означает, что {\displaystyle a}a меньше, чем {\displaystyle b.}b.

{\displaystyle a>b}a>b — означает, что {\displaystyle a}a больше, чем {\displaystyle b.}b.

Неравенства {\displaystyle a>b}a>b и {\displaystyle b<a}b < a равносильны. Говорят, что знаки {\displaystyle >}> и {\displaystyle <}< противоположны; например, выражение «знак неравенства сменился на противоположный» означает, что {\displaystyle <}< заменено на {\displaystyle >}> или наоборот.

Нестрогие неравенства

{\displaystyle a\leqslant b}a\leqslant b — означает, что {\displaystyle a}a меньше либо равно {\displaystyle b.}b.

{\displaystyle a\geqslant b}a\geqslant b — означает, что {\displaystyle a}a больше либо равно {\displaystyle b.}b.

Русскоязычная традиция начертания знаков ⩽ и ⩾ соответствует международному стандарту ISO 80000-2. За рубежом иногда используются знаки ≤ и ≥ либо ≦ и ≧. Про знаки ⩽ и ⩾ также говорят, что они противоположны.

Както так

4,4(86 оценок)
Ответ:
Valeria000
Valeria000
16.08.2022
Найти неопределенные интегралы. Результаты проверить
дифференцированием.
а) ∫(3x^2+4/x+cosx+1)dx=x³+4·ln IxI+sinx +x +C 
проверка:
(x³+4·ln IxI+sinx +x +C)'=3x²+4/x +cosx+1  -  верно

б) ∫[4x/√(x^2+4)]dx=    [ (x^2+4)=t     dt=2xdx ]   =∫2dt/√t=4√t+c=4√(x^2+4)+c
проверка:
(4√(x^2+4)+c)'=[4(1/2)/√(x^2+4)]·2·x =4x/√(x^2+4)  -  верно

в) ∫-2xe^xdx  =-2 ∫xe^xdx= [ x=u         e^xdx=dv  ]
                                           [ dx=du       e^x=v      ]

-2 ∫xe^xdx=-2( u·v- ∫vdu)=-2(x·e^x-∫e^x·dx)=-2(x· e^x-e^x)+c=-2·(e^x)·(x-1)+c
проверка:
(-2·(e^x)·(x-1)+c)'=-2((e^x)'·(x-1)+(e^x)·(x-1)')=-2((e^x)·(x-1)+(e^x))=-2(e^x)·x
=-2x·(e^x) - верно
4,6(65 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ