і ми зустрічалися з різними рівняннями і будували їх графіки.
рівнянням фігури на площині в декартових координатах називається рівняння з двома змінними х і у, яке задовольняють координати будь-якої точки фігури, і навпаки: будь-які два числа, які задовольняють це рівняння, є координатами деякої точки цієї фігури.
яке ж рівняння має коло?
для того щоб скласти рівняння кола, згадаємо його властивість, що міститься в означенні кола: усі точки кола розміщені в одній площині з його центром і однаково від нього віддалені.
нехай центр кола м(а; b), а радіус кола r (рис. 140).
позначимо на колі будь-яку точку а (х; у). відстань від точки м до точки а дорівнює r, тобто am = r, але за формулою відстані між двома точками маємо ам2 = (х – а)2 + (y – b)2, або (x – a)2 + (y – b)2 = r2. (1)
координати будь-якої точки цього кола задовольняють рівняння (1). правильно і те, що будь-яка точка, координати якої задовольняють рівняння (1), належить колу.
отже, (x – a)2 + (y – b)2 = r2 — рівняння кола. якщо центр кола (рис. 141) лежить у початку координат, то воно має рівняння х2 + у2 = r2.
розглянемо рівняння (1), у якому х і у — змінні координати точок кола, а числа а і b — відповідно абсциса і ордината центра, r — радіус кола. отже, щоб записати рівняння кола, треба запам'ятати цю формулу і знати координати центра і радіус.
наприклад, нехай m(-1; 2), a r = 2, тоді рівняння кола (x + 1)2 + (y – 2)2 = 4.
виконання вправ
1) які з точок: а(1; 2), в(3; 4), с(-4; 3), d(0; 5), f(5; -1) —лежать на колі, рівняння якого х2 + у2 = 25? 2) запишіть рівняння кола радіуса 1, а координати центра:
а) (1; 1);
б) (-1; 1);
в) (1; -1);
г) (-1; -1)
3) укажіть координати центра і радіус кола, яке задане рівнянням:
a) (x – 1)2 + y2 = 9;
б) (x + 1)2 + (у + 3)2 = 1;
в) x2 + (y + 1)2 = 2;
г) (x + 1)2 + (y + 2)2 = 7.
4) знайдіть на колі х2 + у2 = 100 точки:
а) з абсцисою 6;
б) з ординатою 8.
iv. закріплення й усвідомлення нового матеріалурозв'язування
1. дано точки а(2; 1), в(-2; 5). складіть рівняння кола, діаметром якого є відрізок ав.2. дано точки а(-1; -1) і с(-4; 3). складіть рівняння кола:
а) з центром у точці а і яке проходить через точку с;
б) з центром у точці с і яке проходить через точку а.
3. знайдіть на осі ох центр кола, яке проходить через точку а(1; 4) і має радіус 5.4. складіть рівняння кола з центром (1; 2), яке дотикається до осі ох.5. складіть рівняння кола з центром (-3; -4), яке проходить через початок координат.6. доведіть, що відрізок ав, кінці якого а(2; -5) і в(5; -2) є хордою кола (х - 5)2 +(у + 5)2 = 9.7. чи перетинає коло (х + 4)2 + (у – 1)2 = 20 вісь оу? якщо перетинає, то в яких точках?
v. є завдання
вивчити рівняння кола та розв'язати і.
1. коло задане рівнянням (х – 1)2 + (у + 3)2 =10. чи проходить це коло через початок координат? 2. чи перетинає коло (х – 3)2 + (у + 5)2 = 26 вісь ох? якщо перетинає, то знайдіть точки перетину з віссю ох.3. знайдіть рівняння кола, діаметром якого є відрізок ав, якщо а(8; 5), в(2; -3).
vi. підбиття підсумків уроку
завдання класу
1. запишіть рівняння кола.2. знайдіть координати центра і довжини радіусів кіл, зображених на рис. 142. запишіть рівняння цих кіл.
Рух - відображення площині на себе, при якому відстані між точками площини зберігаються. Приклади руху: осьова симетрія, центральна симетрія, паралельний перенос. Властивості руху: відрізок переходить в відрізок, кут переходить в рівний йому кут, окружність переходить в окружність того ж радіуса і т. П.Мал. 1. Нехай є деяка виділена точка Про площині. Крім того, розглянемо довільну точку М тій же площині. Поворотом (позначення -) щодо точки О, званої центром повороту на Ðα (кут повороту) називається таке відображення площині на себе, при якому будь-яка точка М площині переходить в таку точку М1 тій же площині, що ОМ = ОМ1 і, крім того, ÐМОМ1 = α (Рис. 1). Доведемо, що поворот є рухом. Доказ (Рис. 2).Розглянемо точки М і N площині, що переходять при повороті відповідно в точки М1 і N1 тій же площині. Розглянемо трикутники ОМN і ОМ1N1. У цих трикутниках ОМ = ОМ1 і ОN = ОN1. ÐМОN = α - ÐМОN1; ÐМ1ОN1 = α - ÐМОN1, отже, ÐМОN = ÐМ1ОN1. Таким чином, зазначені трикутники рівні за двома сторонами і кутом між ними. Звідси випливає рівність відрізків МN = М1N1. Оскільки точки М і N вибиралися нами довільно, можна стверджувати, що при повороті довжини відрізків зберігаються. Теорема доведена. Нам необхідно навчитися використовувати розглянутий тип руху. Завдання (аналогічна № 1167 з підручника Атанасян, см. Список літератури) Побудуйте трикутник, який виходить з даного трикутника ABC поворотом навколо точки А на кут 60 ° проти годинникової стрілки (ΔАВС). Рішення (Рис. 3).При повороті точка А перейде в саму себе. Точки В і С перейдуть в точки В1 і С1 відповідно. Кути трикутника і довжини його сторін, відповідно до загальних властивостями руху, збережуться (всі позначення сторін і кутів дані на Рис. 3). Побудови при повороті вкрай за до циркуля побудувати дугу кола радіусом, рівним довжині сторони трикутника (АС або АВ), з центром в точці А, далі за до транспортира відкласти на дузі кут 60 ° і відзначити точку-образ (В1 або С1) . Поєднавши отримані точки-образи відрізками, можна отримати шуканий трикутник А1У1С1, що є чином трикутника АВС (ΔАВС = ΔА1В1С1). Точка О є точкою перетину биссектрис рівностороннього трикутника ABC. Доведіть, що при повороті навколо точки О на кут 120 ° трикутник ABC відображається на себе. Рішення.Точка О перетину биссектрис правильного трикутника є центром цього трикутника. Отже, вершини трикутника при повороті навколо точки О будуть «малювати» дуги кола, описаного навколо ΔАВС. Легко показати, що ÐВОС = ÐСОА = ÐАОВ = 120 °. Отже, при повороті, точка А перейде в точку В, точка В перейде в точку С і точка С перейде в точку А (нагадаємо, що кут повороту вважається позитивним, якщо поворот відбувається проти годинникової стрілки). Таким чином, ΔАВС = ΔАВС. Завдання вирішена. Завдання. Дана пряма, на якій задані точка О1 і точка О2 і дано точки А і В, що лежать по різні боки від цієї прямої. Причому мають місце рівності відстаней: О1А = О1В, О2А = О2В. Довести, що точки А і В симетричні щодо зазначеної прямий. Рішення (Рис. 5).Для доказу необхідного в завданню затвердження нам необхідно довести, що АМ = МВ і АВ ^ О1О2. Побудуємо коло радіусом О1А з центром в точці О1 і коло радіусом О2А з центром в точці О2. Розглянемо деяку осьову симетрію з віссю О1О2. При такому відображенні півкола, розташовані у верхній півплощині, перейдуть до відповідних півкола, розташовані в нижній півплощині щодо осі симетрії. При цьому точка перетину «верхніх» півколо - точка А - перейде в точку перетину «нижніх» півколо - точку В. Тобто точка В симетрична точці А відносно даної прямої. Завдання вирішена. На закінчення розберемо ще один застосування понять симетрії. Дан паралелограм ABCD. Довести, що точка перетину його діагоналей є його центром симетрії. Нагадування: фігура називається симетричною відносно точки О, якщо для кожної точки фігури симетрична їй точка щодо точки Про також належить цій фігурі. Точка О називається центром симетрії фігури. Кажуть також, що фігура має центральну симетрію.
і ми зустрічалися з різними рівняннями і будували їх графіки.
рівнянням фігури на площині в декартових координатах називається рівняння з двома змінними х і у, яке задовольняють координати будь-якої точки фігури, і навпаки: будь-які два числа, які задовольняють це рівняння, є координатами деякої точки цієї фігури.
яке ж рівняння має коло?
для того щоб скласти рівняння кола, згадаємо його властивість, що міститься в означенні кола: усі точки кола розміщені в одній площині з його центром і однаково від нього віддалені.
нехай центр кола м(а; b), а радіус кола r (рис. 140).
позначимо на колі будь-яку точку а (х; у). відстань від точки м до точки а дорівнює r, тобто am = r, але за формулою відстані між двома точками маємо ам2 = (х – а)2 + (y – b)2, або (x – a)2 + (y – b)2 = r2. (1)
координати будь-якої точки цього кола задовольняють рівняння (1). правильно і те, що будь-яка точка, координати якої задовольняють рівняння (1), належить колу.
отже, (x – a)2 + (y – b)2 = r2 — рівняння кола. якщо центр кола (рис. 141) лежить у початку координат, то воно має рівняння х2 + у2 = r2.
розглянемо рівняння (1), у якому х і у — змінні координати точок кола, а числа а і b — відповідно абсциса і ордината центра, r — радіус кола. отже, щоб записати рівняння кола, треба запам'ятати цю формулу і знати координати центра і радіус.
наприклад, нехай m(-1; 2), a r = 2, тоді рівняння кола (x + 1)2 + (y – 2)2 = 4.
виконання вправ
1) які з точок: а(1; 2), в(3; 4), с(-4; 3), d(0; 5), f(5; -1) —лежать на колі, рівняння якого х2 + у2 = 25? 2) запишіть рівняння кола радіуса 1, а координати центра:а) (1; 1);
б) (-1; 1);
в) (1; -1);
г) (-1; -1)
3) укажіть координати центра і радіус кола, яке задане рівнянням:a) (x – 1)2 + y2 = 9;
б) (x + 1)2 + (у + 3)2 = 1;
в) x2 + (y + 1)2 = 2;
г) (x + 1)2 + (y + 2)2 = 7.
4) знайдіть на колі х2 + у2 = 100 точки:а) з абсцисою 6;
б) з ординатою 8.
iv. закріплення й усвідомлення нового матеріалурозв'язування
1. дано точки а(2; 1), в(-2; 5). складіть рівняння кола, діаметром якого є відрізок ав.2. дано точки а(-1; -1) і с(-4; 3). складіть рівняння кола:а) з центром у точці а і яке проходить через точку с;
б) з центром у точці с і яке проходить через точку а.
3. знайдіть на осі ох центр кола, яке проходить через точку а(1; 4) і має радіус 5.4. складіть рівняння кола з центром (1; 2), яке дотикається до осі ох.5. складіть рівняння кола з центром (-3; -4), яке проходить через початок координат.6. доведіть, що відрізок ав, кінці якого а(2; -5) і в(5; -2) є хордою кола (х - 5)2 +(у + 5)2 = 9.7. чи перетинає коло (х + 4)2 + (у – 1)2 = 20 вісь оу? якщо перетинає, то в яких точках?v. є завдання
вивчити рівняння кола та розв'язати і.
1. коло задане рівнянням (х – 1)2 + (у + 3)2 =10. чи проходить це коло через початок координат? 2. чи перетинає коло (х – 3)2 + (у + 5)2 = 26 вісь ох? якщо перетинає, то знайдіть точки перетину з віссю ох.3. знайдіть рівняння кола, діаметром якого є відрізок ав, якщо а(8; 5), в(2; -3).vi. підбиття підсумків уроку
завдання класу
1. запишіть рівняння кола.2. знайдіть координати центра і довжини радіусів кіл, зображених на рис. 142. запишіть рівняння цих кіл.