М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nikaslavnikova
Nikaslavnikova
08.09.2020 05:28 •  Геометрия

В треугольнике АВС АВ = ВС = 14 мм. Точка М лежит на стороне ВС и делит её пополам. Известно, что периметр АВМ больше периметра АМС на 5 мм. Найдите АС

👇
Ответ:
Aidanа1307
Aidanа1307
08.09.2020

АС = 9 мм

Объяснение:

1) Из условия задачи следует, что ВМ = МС = ВС : 2 = 14 : 2 = 7 мм

2) Периметр ΔАВМ равен:

АВ + ВМ + АМ = 14 + 7 + АМ = 21 + АМ

3) Периметр ΔАМС равен:

МС + АМ + АС = 7 + АМ + АС

4) Так как периметр ΔАВМ больше периметра ΔАМС на 5 мм, то можно составить следующее уравнение:

РΔАВМ - РΔАМС =5

21 + АМ - (7 + АМ + АС)= 5  

21 + АМ - 7 - АМ  - АС = 5

21 - 7 - 5 = АС

АС = 21 - 12 = 9 мм

ответ: АС = 9 мм

4,7(21 оценок)
Открыть все ответы
Ответ:
vladd010703
vladd010703
08.09.2020

Образующая конуса наклонена к плоскости основания под углом 30°.


Плоскость сечения образована сторонами, равными образующей, и угол между ними 60° 


Плоскость сечения - правильный треугольник.


Треугольник, образованный образующей, радиусом конуса и его высотой - половина правильного треугольника.

Высота - катет этого треугольника и равна половине образующей.

Второй катет равен радиусу основания и, как высота правильного треугольника
( можно и по теореме ПИфагора найти), равен (а√3):2=(L√3):2

(L√3):2=6
L√3=12 см


L=12:√3=12√3:√3*√3=12√3:3=4√3 см


Как уже сказано, плоскость сечения - равносторонний треугольник.
Формула площади равностороннего треугольника
S=(a²√3):4

S=(L√3)²√3:4=S=(16 *3)√3:4=48√3:4
S= 12√3 cм²

 


Радиус основания конуса равен 6 см., а образующая наклонена к плоскости основания под углом 30 граду
4,8(49 оценок)
Ответ:

 В окружность вписан квадрат со стороной 9 корней из 2 см. Найдите сторону правильного треугольника, описанного около этой окружности.

ответ:18√3 (см)

Объяснение:

 Диаметром окружности, описанной около квадрата, является его диагональ. Точкой пересечения диагоналей квадрат делится на 4 равнобедренных прямоугольных треугольника, гипотенузы которых - стороны квадрата, а острые углы 45°. => r=9√2•sin45°=9

Центры окружностей, вписанных и описанных около правильного треугольника, совпадают ( это точка пересечения биссектрис, которые в то же время являются его срединными перпендикулярами).  

  Радиус вписанной в правильный треугольник окружности находят по формуле r=a:2√3 , где а - сторона правильного треугольника. =>

a=r•2√3  

a=9•2√3=18√3 (см)

4,7(44 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ