Прямоугольный треугольник с катетом 5 и гипотенузой 13 относится к Пифагоровым тройкам с отношением сторон 5:12:13. ⇒ АС=12 ( можно найти и по т.Пифагора)
sin∠CAB=ВС/АВ=5/13
В прямоугольном ∆ СНА ∠CAH=∠CAB ⇒ CH/AC=5/13
CH=5•12:13
CH=60/13
* * *
2
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой, проведенной из вершины прямого угла.
Весь план они вдвоем выполнили за 4/0,9 = 40/9 дня. За 1 день они вдвоем выполняли по 9/40 части плана. 1 рабочий выполнит его за x дней, по 1/х части в день. 2 рабочий выполнит его за (x+2) дней, по 1/(х+2) части в день. 1/x + 1/(x+2) = 9/40 Умножаем все на 40x(x+2) 40(x+2) + 40x = 9x(x+2) 40x + 80 + 40x = 9x^2 + 18x 9x^2 - 62x - 80 = 0 D = 62^2 + 4*9*80 = 3844 + 2880 = 6724 = 82^2 x1 = (62 - 82)/18 = -10/18 < 0 x2 = (62 + 82)/18 = 144/18 = 8 x = 8 - за это время 1 рабочий сделает весь план. x+2 = 10 - за это время 2 рабочий сделает весь план.
Пусть дан ∆ АВС, ∠С=90°. АВ=13; ВС=5.
Решить эту задачу можно разными .
1.
Прямоугольный треугольник с катетом 5 и гипотенузой 13 относится к Пифагоровым тройкам с отношением сторон 5:12:13. ⇒ АС=12 ( можно найти и по т.Пифагора)
sin∠CAB=ВС/АВ=5/13
В прямоугольном ∆ СНА ∠CAH=∠CAB ⇒ CH/AC=5/13
CH=5•12:13
CH=60/13
* * *
2
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой, проведенной из вершины прямого угла.
СВ²=АВ•BH
25=13•BH⇒
BH=25/13
CH=√(BC²-BH²)=√(25•144:169)=60/13=4⁸/₁₃
* * *
При желании можно найти СН и другими .