1) sin a = √2/2; a1 = pi/4+2pi*k; cos a1 = √2/2 a2 = 3pi/4+2pi*k; cos a2 = -√2/2 cos(60 + a1) = cos 60*cos a1 - sin 60*sin a1 = = 1/2*√2/2 - √3/2*√2/2 = √2/4*(1 - √3) = -√2(√3 - 1)/4 cos(60 + a2) = cos 60*cos a2 - sin 60*sin a2 = = -1/2*√2/2 - √3/2*√2/2 = -√2/4*(1 + √3) = -√2(√3 + 1)/4
2) sin a = 2/3; cos b = -3/4; a ∈ (pi/2; pi); b ∈ (pi; 3pi/2) cos a < 0; sin^2 a = 4/9; cos^2 a = 1-4/9 = 5/9; cos a = -√5/3 sin b < 0; cos^2 b = 9/16; sin^2 b = 1-9/16 = 7/16; sin b = -√7/4 sin(a+b) = sin a*cos b + cos a*sin b = = 2/3*(-3/4) + (-√5/3)(-√7/4) = -6/12 + √35/12 = (√35 - 6)/12 cos(-b) = cos b = -3/4
Это двойное нестрогое неравенство.
1≤х + 3/4≤4 I -3/4
1 - 3/4 ≤х + 3/4 - 3/4 ≤4 - 3/4
1/4 ≤ х ≤3 1/4
Целые решения : 1; 2; 3.
Из них простые числа : 2 и 3.
При условии: 1≤ (х+3)/4 ≤4 I *4
1 * 4 ≤ (х+3)/4 * 4 ≤ 4 * 4
4 ≤ х+3 ≤ 16 I -3
4-3 ≤ х+3-3 ≤ 16-3
1 ≤ х ≤ 13
х∈[1; 13]
В этом промежутке простые числа: 2; 3; 5; 7; 11; 13.
ответ: 6 простых чисел в промежутке.
Ставьте скобки)).