Log(3)x+log(x)3-2,5≥0 перейдём к одному основанию 3 :log(x)3=1\log(3)x log(3)x+1\log(3)x-2,5≥0 приведём к общему знаменателю log²(3)x-2,5log(3)x+1≥0 ОДЗ:х>0 введём замену переменной , пусть log(3)x=t t²-2,5t+1≥0 умножим каждый член уравнения на 2 2t²-5t+2≥0 D=25-16=9 t1=1\2 t2=2 log(3)x=1\2 x=√3 log(3)x=2 x=9 на числовой прямой отметим точки √3 и 9 ( закрашенные , так как они принадлежат промежутку). Прямая разбивается на на 3 промежутка : (-∞;√3] [√3 ; 9] [9 ; ∞) положительное значение с учётом ОДЗ приобретает на промежутке х∈(0;√3] и [9;∞)
S = 4·2 - 8/3 - (4·1 - 1/3) = 8 - 8/3 - 4 + 1/3 = 4 - 7/3 = 5/3
Объяснение:
Площадь вычисляется через определённый интеграл.
Найдём пределы интегрирования.
График функции у = 4-x² -квадратная парабола, с вершиной в точке А(0;4) и пересекающая ось х в точках х =-2 и х = 2.
Верхний предел интегрирования сразу становится ясен: это х = 2.
Нижний предел задан: это х = 1
Интегрируем ∫(4-x²)dx = 4x - x³/3
Подставим пределы:
S = 4·2 - 8/3 - (4·1 - 1/3) = 8 - 8/3 - 4 + 1/3 = 4 - 7/3 = 5/3