1) x+y=5
(-2;y)
-2+y=5
y=5+2
y=7
2)4x+5y=20
OX OY
y=0 x=0
4x+5*0=20 4*0+5y=20
4x=20 5y=20
x=5 y=4
A(5;0) B (0;4)
3)x+y=5
(1;4) 1+4=5
(2;3) 2+3=5
(3;2) 3+2=5
(4;1) 4+1=5
(5;0) 5+0=5
4)2x+4y=14
4y=14-2x
y=3,5-0,5x
2x+4(3,5-0,5x)=14
2x+14-2x=14
2x-2x=14-14
0x=0
x - любое число
5)8x-4y=28
8x=28+4y
2x=7+y
x=3,5+0,5y
8(3,5+0,5y)-4y=28
28+4y-4y=28
4y-4y=28-28
0y=0
y - любое число
Объяснение:
Остальные задания с графиками сделай сам
Обратившись к основному тригонометрическому тождеству, получим:
2sin^2(x) - 5sin(x)cos(x) + 5cos^2(x) = sin^2(x) + cos^2(x);
sin^2(x) - 5sin(x)cos(x) + 4cos^(x) = 0.
Разделим полученное уравнение на cos^2(x):
tg^2(x) - 5tg(x) + 4 = 0.
Произведем замену переменных t = tg(t):
t^2 - 5t + 4 = 0.
Корни квадратного уравнения вида ax^2 + bx + c = 0 определяются
по формуле: x12 = (-b +- √(b^2 - 4 * a * c) / 2 * a.
t12 = (5 +- 3) / 2;
t1 = 1; t2 = 4.
tg(x) = 1;
x1 = π/4 +- π * n.
x2 = arctg(4) +- π * n.
Объяснение: