Укажите правильный ответ. Один из корней уравнения x + bx — 180 = О равен 10. Найдите второй корень и коэффициент р. х, = — 18; b = 8 х, = –18; b = = 8 х = 18: b = 8 х = 18: b = 8
С3, неплохо log(6-x, (x-6)^2/(x-2)) >= 2 ОДЗ: (x-6)^2/(x-2) >0 => (2;6) U (6;+oo) 6-х =\= 1 => x=\=5 6-x>0 => (-oo;6) общий промежуток: (2;5) U (5;6) Пользуемся правилом разности логарифмов log(6-x, (x-6)^2) - log(6-x, x-2) >=2 2log(6-x, |x-6|)-log(6-x, x-2)>=2 -log(6-x, x-2)>=0 log(6-x, x-2)<=0 1. 6-x C (0;1) 6-x>0 => 6<x 6-x<1 => x>5 общий промежуток (5;6) меняем знак неравенства x-2>=1 x>=3 общее решение (5;6) 2. 6-x C (1;+oo) 6-x>1 => x<5 x-2<=1 x<=3 общее решение (-oo;3] С учетом ОДЗ (2;3] U (5;6)
(x^2-x-14)/(x-4) + (x^2-8x+3)/(x-8) <= 2x+3 Здесь можно не побрезговать и тупо привести к общему знаменателю (x^2-x-14)(x-8)+(x^2-8x+3)(x-4)-(2x-3)(x-4)(x-8) / (x-4)(x-8) <=0 После всех подсчетов остается (x+4)/((x-4)(x-8))<=0 методом интервалов x<=-4; x C (4;8)
ответ:Сумма логарифмов с одинаковыми основаниями равна логарифму произведения выражений, стоящих под знаком логарифма. logc a + logc b = logc (a + b), a > 0, b > 0. log2 ((x - 2)(x - 3)) = 1; О. Д. З. {х - 2 > 0, х - 3 > 0; х > 3. Применим определение логарифма: Логарифмом числа а по основанию с logc a = b, называется такое число b, что выполняется равенство а = с^b. (х - 2)(х - 3) = 2^1; х^2 - 3х - 2х + 6 = 2; х^2 - 5х + 6 - 2 = 0; х^2 - 5х + 4 = 0; D = b^2 - 4ac; D = (-5)^2 - 4 * 1 * 4 = 25 - 16 = 9; √D = 3; x = (-b ± √D)/(2a); x1 = (5 + 3)/2 = 4; x2 = (5 - 3)/2 = 1 - посторонний корень, т.к. не принадлежит О. Д. З. Объяснение: ОТВЕТ. 4. ЕСЛИ ЧТО ТО НЕ ТАК НЕ БЛАКИРУЙТЕ АККАУНТ
log(6-x, (x-6)^2/(x-2)) >= 2
ОДЗ:
(x-6)^2/(x-2) >0 => (2;6) U (6;+oo)
6-х =\= 1 => x=\=5
6-x>0 => (-oo;6)
общий промежуток: (2;5) U (5;6)
Пользуемся правилом разности логарифмов
log(6-x, (x-6)^2) - log(6-x, x-2) >=2
2log(6-x, |x-6|)-log(6-x, x-2)>=2
-log(6-x, x-2)>=0
log(6-x, x-2)<=0
1. 6-x C (0;1)
6-x>0 => 6<x
6-x<1 => x>5
общий промежуток (5;6)
меняем знак неравенства
x-2>=1
x>=3
общее решение (5;6)
2. 6-x C (1;+oo)
6-x>1 => x<5
x-2<=1
x<=3
общее решение (-oo;3]
С учетом ОДЗ
(2;3] U (5;6)
(x^2-x-14)/(x-4) + (x^2-8x+3)/(x-8) <= 2x+3
Здесь можно не побрезговать и тупо привести к общему знаменателю
(x^2-x-14)(x-8)+(x^2-8x+3)(x-4)-(2x-3)(x-4)(x-8) / (x-4)(x-8) <=0
После всех подсчетов остается
(x+4)/((x-4)(x-8))<=0
методом интервалов
x<=-4; x C (4;8)
объединяем два неравенства: (5;6)
ответ: (5;6)