Эта функция известна, и имеет общий вид: y=kx+b, если коэффициент k - Отрицательный, то функция убывает, если положительный - возростает. В намем случает k=3, теость k - положительное число. => Функция возростает
Бассейн наполняется в 4 раза быстрее, чем опорожняется. то есть то, что из бассейна выливается вода уменьшает его скорость напрлнения на 1/4, остается 3/4 скорости наполнения. 3/(3/4)=4 часа. Получается, что один час будет тратиться не целесообразно.
Можно решить эту задачу другим Пусть V - объем бассейна, x - скорость наполнения, y - скорость опрожнения. V:x=3 V:y=12 Откуда плучаем V=3x V=12y 3x=12y x=4y y=x/4 Скорость наполнения бассейна при включенной сливной трубе будет x-y=x-x/4=3x/4 Тогда время на заполнени бассейна будет 4 часа 4-3=1 -один час будет тратиться не целесообразно.
Пусть v - искомая скорость лодки, S - расстояние между пристанями. Тогда по течению лодка плыла со скоростью v+4 км/ч, и время в пути составило S/(v+4) часа. По условию, S/(v+4)=4,5=9/2 часа. Против течения лодка плыла со скоростью v-4 км/ч, и время в пути составило S/(v-4) часа. По условию, S/(v-4)=7. Получена система двух уравнений:
S/(v+4)=9/2 S/(v-4)=7
Из первого уравнения находим v+4=S/(9/2)=2*S/9 км/ч, из второго уравнения находим v-4=S/7 км/ч. Тогда (v+4)/(v-4)=2*S/9/(S/7)=14/9, откуда v+4=14*(v-4)/9, или v+4=14*v/9-56/9. Умножая обе части на 9, приходим к уравнению 9*v+36=14*v-56. перенося левую часть вправо, получаем уравнение 0=5*v-92, откуда 5*v=92 и v=92/5=18,4 км/ч. ответ: 92/5=18,4 км/ч.
y=3х-5
График функции является прямая.
Эта функция известна, и имеет общий вид: y=kx+b, если коэффициент k - Отрицательный, то функция убывает, если положительный - возростает. В намем случает k=3, теость k - положительное число. => Функция возростает
ответ: Функция возростает.