М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Дря
Дря
07.05.2020 10:45 •  Алгебра

Постройте график функции f(x)=x^2-2x-3. Используя график, найдите:
a) f(2); f(-1.5); ;
b) значения x, при которых f(x)=5; f(x)= -1;

👇
Открыть все ответы
Ответ:
Magistr126
Magistr126
07.05.2020

Объяснение:

Мы докажем это равенство по индукции. Но сначала преобразуем правую часть равенства к более удобному для нас виду:

\frac{1}{12} (2n^6+6n^5+5n^4-n^2)=\frac{n^2(2n^4+6n^3+5n^2-1)}{12} =\frac{n^2(2n^4+2n^3+4n^3+4n^2+n^2+n-n-1)}{12} =\frac{n^2(2n^3(n+1)+4n^2(n+1)+n(n+1)-(n+1))}{12} =\frac{n^2(n+1)(2n^3+4n^2+n-1)}{12} =\\=\frac{n^2(n+1)(2n^3+2n^2+2n^2+2n-n-1)}{12} =\frac{n^2(n+1)(2n^2(n+1)+2n(n+1)-(n+1))}{12}=\frac{n^2(n+1)^2(2n^2+2n-1)}{12}А вот теперь применим индукцию. Легко проверить, что для n=1 равенство верно.

Теперь предположим что равенство верно для n=k:

1^5+2^5+...+k^5=\frac{k^2(k+1)^2(2k^2+2k-1)}{12}

Прибавив к обеим частям равенства (k+1)^5 получим:

1^5+2^5+...+k^5+(k+1)^5=\frac{k^2(k+1)^2(2k^2+2k-1)}{12}+(k+1)^5

Займёмся преобразованием правой части этого равенства:

\frac{k^2(k+1)^2(2k^2+2k-1)}{12}+(k+1)^5=(k+1)^2\bigg(\frac{k^2(2k^2+2k-1)}{12} +(k+1)^3\bigg)=\\=\frac{(k+1)^2}{12} \big(k^2(2k^2+2k-1)+12(k^3+3k^2+3k+1)\big)=\\=\frac{(k+1)^2}{12}\big(2k^4+14k^3+35k^2+36k+12\big)=\frac{(k+1)^2(2k^4+4k^3+10k^3+20k^2+15k^2+30k+6k+12)}{12}=\\=\frac{(k+1)^2(2k^3(k+2)+10k^2(k+2)+15k(k+2)+6(k+2))}{12}=\frac{(k+1)^2(k+2)(2k^3+10k^2+15k+6)}{12}=\\=\frac{(k+1)^2(k+2)(2k^3+4k^2+6k^2+12k+3k+6)}{12}=\frac{(k+1)^2(k+2)(2k^2(k+2)+6k(k+2)+3(k+2))}{12}==\frac{(k+1)^2(k+2)^2(2k^2+6k+3)}{12}=\frac{(k+1)^2(k+2)^2(2(k+1)^2+2k+1)}{12}=\frac{(k+1)^2(k+2)^2(2(k+1)^2+2(k+1)-1)}{12}Таким образом

1^5+2^5+...+k^5+(k+1)^5=\frac{(k+1)^2(k+2)^2(2(k+1)^2+2(k+1)-1)}{12}

То есть если равенство верно для произвольного n=k, то оно также оказывается верным и для n=k+1. По индукции заключаем верность равенства для любого натурального n.

Если же вас интересует каким можно вывести формулу, которую мы только что доказали - напишите мне в ЛС.

4,5(84 оценок)
Ответ:

Будем считать, что площадь равна 150 кв.ед.

Пусть один катет равен x, второй x + a, гипотенуза x + 2a.

При двух неизвестных надо составить 2 уравнения.

Первое по Пифагору.

x² + (x + a)² = (x + 2a)².

x² + x² + 2ax + a² = x² + 4ax + 4a².

x² - 2ax - 3a² = 0.   D = 4a² - 4*1*3a² = 16a².  √D = 4a.

x₁ = (2a - 4a)/2 = -a  (отрицательное значение не принимаем).

x₂ = (2a + 4a)/2 = 3a.

Второе по площади: (1/2)*x*(x + a) = 150.

x² + ax = 300. Вместо х подставим 3a.

9a² + 3a² = 300.

12a² = 300,   a² = 300/12 = 25, a = √25 = 5.

Отсюда находим стороны треугольника.

х = 3а = 3*5 = 15.

х + а = 15 + 5 = 20.   Это катеты.

Гипотенуза равна 15 + 2*5 = 25.

4,8(81 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ