(x-2)²+(y-2)² ≤2²-круг с центром O(2;2) , S=πR²=4π
y ≥ |x-2| -плоскость, ограниченная линиями y=x-2 и y=-(x-2).
Плоскость будет находится выше или на уровне линий(неравенство нестрогое)
Площадь фигуры-площадь пересечения круга и плоскости.
Разделим круг пополам, проведя линию y=2.Заметим, что верхняя часть круга полностью попала в плоскость.Нижняя же только частично.Если внимательно присмотреться, то можно заметить, что в плоскость попали только 2 прямоугольных треугольника.Найдем их площадь:
S=ab/2, где a,b-катеты.Но они равны радиусу круга, значит,
S=R^2/2=2
Таких треугольников два, значит, Sобщ=4
Складываем площадь верхнего полукруга и 2-х треугольников:
Каждую сторону ромба можно уменьшить на любое число положительное "a" получившийся меньший ромб все равно будет подобен исходному, но если нам необходимо сохранить пропорции сторон и площади ромбов, а n это цело число то каждую сторону ромба будем уменьшать на четное количество раз, таким образом например: если исходный ромб имеет сторону 8 то его Р= 32, уменьшим каждую сторону вдвое и получим ромб со стороной 4 тогда площадь этого ПОДОБНОГО ромба будет 16, что соответствует целому параметру n и т.д.
2π+4
Объяснение:
x²+y² ≤4x+4y-4
x²+y²-4x-4y+4 ≤0
(x²-4x+4)+(y²-4y+4 )≤4
(x-2)²+(y-2)² ≤2²-круг с центром O(2;2) , S=πR²=4π
y ≥ |x-2| -плоскость, ограниченная линиями y=x-2 и y=-(x-2).
Плоскость будет находится выше или на уровне линий(неравенство нестрогое)
Площадь фигуры-площадь пересечения круга и плоскости.
Разделим круг пополам, проведя линию y=2.Заметим, что верхняя часть круга полностью попала в плоскость.Нижняя же только частично.Если внимательно присмотреться, то можно заметить, что в плоскость попали только 2 прямоугольных треугольника.Найдем их площадь:
S=ab/2, где a,b-катеты.Но они равны радиусу круга, значит,
S=R^2/2=2
Таких треугольников два, значит, Sобщ=4
Складываем площадь верхнего полукруга и 2-х треугольников:
2π+4