) Найдите наибольшее значение функции y=x^3-12x+24 на отрезке [-4;0] y'=3x^2-12 y'=0 x=2 x=-2 y''=6x y(2)- минимум y(-2) max y(0)=24 y(-2)=-8+24+24=40 y(-4)=-64+24+48=8 ответ y(-2)=40 2) Найдите наибольшее значение функции y=(4x^2+49)/x на отрезке [-4;-1] y'=4-49/x^2 y'=0 4x^2=49 x^2=49/4 x1=7/2 x2=-7/2 y(-1)=-4-49=-53 y(-3,5)=-14-14=-28 ответ -28 3) Найдите наибольшее значение функции y=(4x-3)^2*(x+6)-9 на отрезке [-6;3] y'=8(x+6)(4x-3)+(4x-3)^2=32x^2-144+168x+16x^2+9-24x=48x^2+144x+135>0 y(3)=81*9-9=720
4) Найдите наименьшее значение функции y=6cosx-7x+8 на отрезке [-п/2;0] y'=-6sinx-7 y(0)=6+8=14 наименьшее y(-pi/2)=0+8+7pi/2>14
График расположен выше оси ОХ. Точки пересечения с осью ОХ: . Графики функций - это параболы , ветви которых направлены вниз, а вершины в точках (0, а). При х=0 sin0=0 и точка (0,0) является точкой пересечения графика у=|sinx| и оси ОУ, на которой находятся вершины парабол. При а=0 графики y=|sinx| и y=x² имеют одну точку пересе- чения - (0,0), при а<0 точек пересе- чения вообще нет. А при а>0 будет всегда 2 точки пересе- чения этих графиков и соответственно, будет выполняться заданное неравенство. То есть одна точка пересечения при а=0. ответ: а=0.
f(2)=(2)^4-3 * (2)^2+1=16-12+1=5
f"(х)=4x^3-6x
f"(2)=32-12=20
Уравнение=5+20(x-2)=5+20x-40=20x-35