Відповідь:
S6 = -2405/9; S6 = 1820/9
Пояснення:
Sn = b1 *(q^n - 1)/(q - 1)
S3 = b1 * (q^3 - 1)/(q - 1)
195 = 135 * (q^3 - 1)/(q - 1)
(q^3 - 1)/(q - 1) = 195/135 = 39/27
(q - 1) * (q^2 + q + 1)/(q - 1) = 13/9
q^2 + q + 1 - 13/9 = 0
q^2 + q - 4/9 = 0
Розв'язуємо квадратне рівняння
D = 1 - 4 * (-4/9) = 25/9
q1 = (-1 - 5/3)/2 = -4/3
q2 = (-1 + 5/3)/2 = 1/3
S6 = 135 * (q^6 - 1)/(q - 1) = 135 * (q^3 - 1)*(q^3 + 1)/(q - 1) = 135 * (q - 1) * (q^2 + q + 1)*(q^3 + 1)/(q - 1) = 135 * (q^2 + q + 1)*(q^3 + 1)
1) S6 = 135 * ((-4/3)^2 - 4/3 + 1)*((-4/3)^3 + 1)
S6 = 135 * (16/9 - 4/3 + 1) * (-64/27 + 1)= 135 * (13/9)*(-37/27) = 5 * 13/9 * (-37) = -2405/9
2) S6 = 135 * ((1/3)^2 + 1/3 + 1)*((1/3)^3 + 1) = 135 * 13/9 * 28/27 = 5 * 13 * 28/9 = 1820/9
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 3√6). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
3√6 = √а
(3√6)² = (√а)²
9*6 = а
а=54;
b) Если х∈[0; 9], то какие значения будет принимать данная функция?
у= √х
у=√0=0;
у=√9=3;
При х∈ [0; 9] у∈ [0; 3].
с) y∈ [12; 21]. Найдите значение аргумента.
12 = √х
(12)² = (√х)²
х=144;
21 = √х
(21)² = (√х)²
х=441;
При х∈ [144; 441] y∈ [12; 21].
d) Найдите при каких х выполняется неравенство у ≤ 2.
√х <= 2
(√х)² <= (2)²
х <= 4
Неравенство у ≤ 2 выполняется при х <= 4.
у=х2-6х-б+3
а=1 б=-6 с=-б+3
дискриминант = 36 - 4(- б + 3) = 36 +4б -12
оимеет две общие точки, когда дискриминант > 0 =>
4б + 36 - 12 > 0
4б > -24
б > -6
ответ: б принадлежит промежутку (- 6; + бесконечности)