Объяснение:
Найдите корни уравнений
1. 1) x²-5x-5=x-5;
x²-5x-x-5+5=0;
x²-6x=0;
x(x-6)=0;
x1=0;
x2=6.
***
2) -2x²+7x=3x ;
-2x²+7x-3x=0;
-2x²+4x=0;
-2x(x-4)=0;
x1=0;
x2=4.
***
3) 2-7x²+1,8x=2-3x;
2-7x²+1.8x-2+3x=0;
-7x²+4.8x=0;
-x(7x-4.8)=0;
x1=0;
7x=4.8;
x2=4.8/7 =48/70.
***
4) -2x²+5=5-4x;
-2x²+4x=0;
-2x(x-2)=0;
x1=0;
x2=2.
***
5) -0,8x²-9,2x=2,1x ;
-0.8x²-9.2x-2.1x=0;
-0.8x²-11.3x=0;
-0.8x(x+14.125)=0;
x1=0;
x2=-14.125.
***
6) 2-0,7x²+3x=x+2;
-0,7x² +3x-x=0;
-0.7x²+2x=0;
-x(0.7x-2)=0;
x1=0;
0.7x=2;
x=2/0.7=20/7=2 6/7.
***
2. 1) x²-5x=5(5-x) ;
x²-5x-25+5x=0;
x²-25=0;
x²=25;
x=±5.
***
2) -2x²+7x=7x-32 ;
-2x²+32=0;
-x²=-16;
x²=16;
x=±4.
***
3) -0,7x²+5,6x=0 ;
-0,7x(x-8)=0;
x1=0;
x2=8.
***
4) 2x²-x=2-x;
2x²=2;
x²=1;
x=±1.
***
5) -0,8x²-9,2=4,5;
-0.8x²=9.2+4.5;
-0.8x²= 13.7;
x²= -13.7/0.8;
x²= -17.125; (x² не может быть отрицательным. Нет решения).
***
6) -0,7x²+x=x ;
-0,7x²=0;
x=0.
1). что-то не то с условием: из четырех чисел нельзя составить пятизначное число, не имеющие в составе повторяющихся цифр.
2). по признаку делимости на 5: чтобы число делилось на 5, надо, чтоб оно оканчивалось на 0 или 5. Т.к. данные цифры не используются, то числа, делящиеся на 5 составить нельзя.
по признаку делимости на 4: чтобы число делилось на 4, надо, чтоб число составленное из двух последних цифр в том же порядке делилось на 4. из данных цифр можно составить только числа оканчивающиеся на 24, 72, 32.
разберем вариант с 24. тогда с первой и второй цифрами числа так: т.к. цифры не повторяются 2 и 4 использовать нельзя. тогда на первое место в числе можно поставить любую из двух оставшихся цифр (таких 2), а на второе место уже оставшуюся цифру...в результате количество требующихся чисел 2*1=2.
аналогично получим 2 числа оканчивающиеся на 32 и 2 числа оканчивающиеся на 72.
ответ: а) 6 чисел. б) ни одного
3). т.к. учебники алгебры могут стоять только рядом, то возьмем их как один объект, тогда объектов, которые надо расставить у нас 4 (причем 3 из них одного вида - учебники геометрии (я так понимаю нет разницы какой из них будет стоять раньше, какой позже)). существует формула для перестановок с повторениями:
где n - общее кол-во объектов, а и т.д. - кол-во объектов каждого вида
получаем
4). Чисел которые начинаются с 2 - можно составить два. чисел, где 2 стоит на втором месте - тоже два, где на третьем - два. аналогично для 4 и 6.
теперь найдем сумму всех таких чисел: (2*100+2*10+2)*2+(4*100+4*10+4)*2+(6*100+6*10+6)*2
у меня получилось следующее
если надо решение то напиши
ответ должен быть правильным
если можно то лучший ответ или проверенный