Чтобы найти экстремумы, решаем уравнение y'(x)=0; y'(x)=3x^2+20x+25; приравниваем к нулю. 3x^2+20x+25=0; D=400-4*3*25=100; x1=(-20+10)/6=-1,(6); x2=(-20-10)/6=-5; Это точки экстремумов. Теперь надо взять вторую производную функции в этих точках. y''(x)=6x+20; y''(x1)=6*(-1.6666)+20=10 (округлённо). Это больше нуля, значит это точка локального минимума функции. y''(x2)=6*(-5)+20=-10 Это меньше нуля, значит это точка локального минимума функции. То есть от -бесконечности до -5 функция возрастает, от -5 до -1,(6) убывает и от -1,(6) до +бесконечности опять возрастает.
2-2cos²x-6cosx+6=0
cos²x+3cosx-4=0
cosx=a
a²+3a-4=0
a1+a2=-3 U a1*a2=-4
a1=-4⇒cosx=-4<-1 нет решения
a2=1⇒cosx=1⇒x=2πk,k∈z
2
Разделим на cos^2x
1-2tgx-3tg²x=0
tgx=a
3a²+2a-1=0
D=4+12=16
a1=(-2-4)/6=-1⇒tgx=-1⇒x=-π/4+πk,k∈z
a2=(-2+4)/6=1/3⇒tgx=1/3⇒x=arctg1/3+πn,n∈z
3
sin(4x+3x)=-1
sin7x=-1
7x=-π/2+2πk,k∈z
x=-π/14+2πk/7,k∈z
4
Разделим на cos^2x
7tg²x-8tgx+1=0
tgx=a
7a²-8a+1=0
D=64-28=36
a1=(8-6)/14=1/7⇒tgx=1/7⇒x=arctg1/7+πk,k∈z
a2=(8+6)/14=1⇒tgx=1⇒x=π/4+πn,n∈z
5
8sin(x/2)cos(x/2)-3(1+cosx)=0
8sin(x/2)cos(x/2)-3*2cos²(x/2)=0
2cos(x/2)*(4sin(x/2)-3cos(x/2))=0
cos(x/2)=0⇒x/2=π/2+πn,n∈z⇒x=π+2πn,n∈z
4sin(x/2)-3cos(x/2)=0/cos(x/2)
4tg(x/2)-3=0
tg(x/2)=3/4
x/2=arctg0,75+πk,k∈z
x=2arctg0,75+2πk,k∈z