(10x²-1)/(x-1)(x+2)² = (ax-3)/(x+2)² + b/(x+2) + c/(x-1) => (10x²-1)/(x-1)(x+2)² = ((ax-3)(x-1) + b(x+2)(x-1) + c(x+2)²)/(x+2)²(x-1) => 10x²-1 = (ax-3)(x-1) + b(x+2)(x-1) + c(x+2)² = ax²-ax-3x+3+bx²-bx+2bx-2b+cx²+4cx+4c = (a+b+c)x² + (b+4c-a-3)x+3-2b+4c => a+b+c = 10, b+4c-a-3 = 0, 3-2b+4c = -1. Сложим первое и второе равенства: a+b+c+b+4c-a-3 = 10 => 2b+5c = 13 => 2b = 13-5c. Подставим этот результат в третье равенство: 3-13+5c+4c = -1 => 9c = -1+10 = 9 => c = 1. Тогда из 3-2b+4c = -1 следует, что 2b = 4(c+1) => b = 4(c+1)/2 = 4*2/2 = 4. И a = 10 - 1 - 4 = 5.
ответ: a = 5, b = 4, c = 1.
В решении.
Объяснение:
Если ширину прямоугольника уменьшить на 2 см , а длину на 3 см , то получится квадрат , площадь которого на 51 см² меньше площади первоначального прямоугольника. Найдите стороны прямоугольника.
х - ширина первоначального прямоугольника.
у - длина первоначального прямоугольника.
(х - 2) = (у - 3) - длина стороны нового квадрата.
ху - площадь первоначального прямоугольника.
(х - 2)*(у - 3) - площадь нового квадрата.
По условию задачи система уравнений:
(х - 2) = (у - 3)
ху - (х - 2)*(у - 3) = 51
Раскрыть скобки:
х - 2 = у - 3
ху - ху + 3х + 2у - 6 = 51
Привести подобные члены:
х = у - 1
3х + 2у - 6 = 51
Подставить значение х во второе уравнение и вычислить у:
3(у - 1) + 2у - 6 = 51
3у - 3 + 2у - 6 = 51
5у = 51 + 9
5у = 60
у = 60/5
у = 12 (см) - длина первоначального прямоугольника.
х = у - 1
х = 12 - 1
х = 11 (см) - ширина первоначального прямоугольника.
Проверка:
11 * 12 = 132 (см²) - площадь первоначального прямоугольника.
(11 - 2)*(12 - 3) = 9 * 9 = 81 (см²) - площадь нового квадрата.
132 - 81 = 51 (см²), верно.