Пусть хx литров в минуту пропускает вторая труба. тогда первая труба пропускает x-4x−4 литров в минуту. зная, что вторая труба заполнит резервуар объемом 320 литров на 10 минут быстрее, чем первая труба заполнит резервуар объёмом 200 литров, составим уравнение: \frac{320}x+10=\frac{200}{x-4}x320+10=x−4200 \frac{320(x^2-4x)}x+10(x^2-4x)=\frac{200(x^2-4x)}{x-4}x320(x2−4x)+10(x2−4x)=x−4200(x2−4x) 320(x-4)+10(x^2-4x)=200x320(x−4)+10(x2−4x)=200x 320x-1280+10x^2-40x=200x320x−1280+10x2−40x=200x 320x-1280+10x^2-40x-200x=0320x−1280+10x2−40x−200x=0 10x^2+80x-1280=010x2+80x−1280=0 x^2+8x-128=0x2+8x−128=0 d_1=4^2+128=144=12^2d1=42+128=144=122 x_1=-4+12=8x1=−4+12=8 x_2=-4-12=-16x2=−4−12=−16 - не удовлетворяет условию значит первая труба пропускает 8 литров в минуту ответ: 8 литров в минуту
xy = - 3
x = 6 - y
y( 6 - y ) = - 3
6y - y^2 = - 3
y^2 - 6y - 3 = 0
D = 36 + 12 = 48
√ D = √ 48 = 4 √ 3
y1 = ( 6 + 4 √ 3 ) : 2 = 3 + 2 √ 3
y2 = 3 - 2 √ 3
x = 6 - y
x1 = 6 - ( 3 + 2 √ 3 ) = 3 - 2 √ 3
x2 = 6 - ( 3 - 2 √ 3 ) = 3 + 2 √ 3
x^4 = ?
1) ( 3 - 2 √ 3 )^4 = ?
( 3 - 2 √ 3 )^2 = 9 - 12*3 + 4*3 = 9 - 36 + 12 = - 15
( 3 - 2 √ 3 )^4 = - 15 * ( - 15 ) = 225
2) ( 3 + 2 √ 3 )^2 = 9 + 12*3 + 4*3 = 9 + 36 + 12 = 57
( 3 - 2 √ 3 )^4 = 57 * 57 = 3249
1) X^4 + y^4 = 225 + 3249 = 3474
2) X^4 + y^4 = 57 + 225 = 282