Пусть 1 число - x
Пусть 2 число y
Составим систему. на основе условия
{x+y=13
{xy=36
Выразим из 1 x и подставим во 2
x=13-y
(13-y)y=36
13y-y^2-36=0;
y^2-13y+36=0
D=169-144=25
x1=13+5/2=9;
x2=13-5/2=8/5;
И так, у нас 2 варианта чисел, проверим их, на найдем лишнее, подстановкой в оба уравнения
1) {9+y=13
{9y=36
{y=13-9
{y= 4
Подходит. Так как число может быть только одним, то второе значение x - неподходит
ответ: эти числа 9 и 4
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет:
Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой
Перестановки с повторением.
Всего у нас
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность: