С3, неплохо log(6-x, (x-6)^2/(x-2)) >= 2 ОДЗ: (x-6)^2/(x-2) >0 => (2;6) U (6;+oo) 6-х =\= 1 => x=\=5 6-x>0 => (-oo;6) общий промежуток: (2;5) U (5;6) Пользуемся правилом разности логарифмов log(6-x, (x-6)^2) - log(6-x, x-2) >=2 2log(6-x, |x-6|)-log(6-x, x-2)>=2 -log(6-x, x-2)>=0 log(6-x, x-2)<=0 1. 6-x C (0;1) 6-x>0 => 6<x 6-x<1 => x>5 общий промежуток (5;6) меняем знак неравенства x-2>=1 x>=3 общее решение (5;6) 2. 6-x C (1;+oo) 6-x>1 => x<5 x-2<=1 x<=3 общее решение (-oo;3] С учетом ОДЗ (2;3] U (5;6)
(x^2-x-14)/(x-4) + (x^2-8x+3)/(x-8) <= 2x+3 Здесь можно не побрезговать и тупо привести к общему знаменателю (x^2-x-14)(x-8)+(x^2-8x+3)(x-4)-(2x-3)(x-4)(x-8) / (x-4)(x-8) <=0 После всех подсчетов остается (x+4)/((x-4)(x-8))<=0 методом интервалов x<=-4; x C (4;8)
Пусть двузначное число N состоит из х десятков и у единиц, т.е. число имеет вид ху, (где х ≠ 0, иначе число было бы однозначным)
и оно может быть записано как сумма разрядных слагаемых N = 10х + у
Тогда составим систему
( х + у)*5 = 10х + у
2.25*ху = 10х + у
5х + 5у = 10х + у
5х = 4у
у = 5х /4
Тогда, подставив у во второе уравнение, получим:
9/4*х*5х /4 = 10х + 5х /4
9х/4* 5х/4 = 10х + 5х/4 |*16
9х* 5х = 160х + 20х
45х² = 180х | : 45
х² = 4х | :х (х ≠ 0)
х = 4
у = 5х /4 = 5*4 /4 = 5
ответ: это число 45.