x = - 34
Объяснение:
Если в скобках стоит дробь, то так:
cos ((10x-48)*Π/(3x+5)) = 1
Это табличное значение, cos(2Π*n) = 1
(10x-48)*Π/(3x+5) = 2Π*n, n € Z
Делим все на П
(10x-48)/(3x+5) = 2n
Область определения: x ≠ -5/3
10x-48 = 2(3x+5)*n
Делим все на 2
5x-24 = 3nx + 5n
x(5-3n) = 24+5n
x = (5n+24)/(5-3n), n € Z
При четных n числитель четный, а знаменатель нет.
При нечетных n знаменатель четный, а числитель нет.
В обоих случаях дробь будет нецелой.
Единственный целый корень будет, если знаменатель равен 1 или -1.
5-3n = 1; 5-1 = 3n = 4;
n = 4/3 не подходит.
5-3n = -1; 5+1 = 3n = 6; n = 2;
x = (10+24)/(5-6) = -34
В решении.
Объяснение:
Решить квадратное уравнение используя теорему Виета и разложить по формуле квадратного трёхчлена.
Решить:
11) х² - 5х + 6 = 0
По теореме Виета:
х₁ + х₂ = 5;
х₁ * х₂ = 6;
х₁ = 3; х₂ = 2.
12) х² + 5х + 6 = 0
По теореме Виета:
х₁ + х₂ = -5;
х₁ * х₂ = 6;
х₁ = -3; х₂ = -2.
13) х² - 8х + 12 = 0
По теореме Виета:
х₁ + х₂ = 8;
х₁ * х₂ = 12;
х₁ = 4; х₂ = 2.
14) х² - 9х + 18 = 0
По теореме Виета:
х₁ + х₂ = 9;
х₁ * х₂ = 18;
х₁ = 6; х₂ = 3.
15) х² - 7х + 10 = 0
По теореме Виета:
х₁ + х₂ = 7;
х₁ * х₂ = 10;
х₁ = 5; х₂ = 2.
Разложить:
11) х² - 5х + 6;
(х² - 2*х*2,5 + 2,5²) - 2,5² + 6 =
= (х² - 2*х*2,5 + 2,5²) - 6,25 + 6 =
= (х - 2,5)² -0,25;
12) х² + 5х + 6;
(х² + 2*х*2,5 + 2,5²) - 2,5² + 6 =
= (х² + 2*х*2,5 + 2,5²) - 6,25 + 6 =
= (х + 2,5)² - 0,25;
13) х² - 8х + 12;
(х² - 2*х*4 + 4²) - 4² + 12 =
= (х² - 2*х*4 + 4²) - 16 + 12 =
= (х - 4)² - 4;
14) х² - 9х + 18;
(х² - 2*х*4,5 + 4,5²) - 4,5² + 18 =
= (х² - 2*х*4,5 + 4,5²) - 20,25 + 18 =
= (х - 4,5)² - 2,25;
15) х² - 7х + 10;
(х² - 2*х*3,5 + 3,5²) - 3,5² + 10 =
= (х² - 2*х*3,5 + 3,5²) - 12,25 + 10 =
= (х - 3,5)² - 2,25.