Для нахождения точек пересечения с осью Х x^4-4x^2=0 х1=0; х2=2; х3=-2; Для нахождения экстреммумов функции нужно взять производную и прировнять ее 0 f(x)=x^4-4x^2 => f'(x)=4*x^3-8x=0 Корни: х1=0; х2=2^0.5; х3=-2^0.5; (корень квадратный из 2) теперь нужно узнать, что это за точки минимумы или максимумы, возмем значение слева и справа от точки и подставим в уранение если знак меняется с + на - значит максимум если наоборот минимум -2^0.5 0 2^0.5 ---*---о*о*---о*-- -2 -1 1 2
x=0 => y= 0 x=-2^0.5 => y= -4 x=2^0.5 => y= -4
x=-2 => y= 0 x=-1 => y=-3 x=1 => y=-3 x=2 => y= 0
Значение функции меняется от -2 до -2^0.5 функция убывает от 0 до -4 , а от -2^0.5 до -1 ворастает от -4 до -3 следовательно f(-2^0.5) минимум. Значение функции меняется от -1 до 0 функция возрастает от -3 до 0 , а 0 до 1 убывает от 0 до -3 следовательно f(0) максимум. Значение функции меняется от 1 до 2^0.5 функция убывает от -3 до -4 , а от 2^0.5 до 2 ворастает от -4 до 0 следовательно f(2^0.5) минимум.
Исследование завершено Точки пересечения с осью Х х1=0; х2=2; х3=-2; Минимум (-2^0.5;-4) и (2^0.5;-4) Максимум (0;0)
810. Чтобы привести дроби к общему знаменателю нужно и верхнуюю и нижнюю часть умножить на такое число, чтрбы нижняя часть двух дробей стала одинакова. а) 1/4 и 1/6. Произведение заменателей- 6*4=24. чтобы был знаменатель 24 нужно умножить верх и низ первой дроби на 6 (так как надо получить 24, а 4 надо умножить на 6, чтобы получить 24), а вторую- на 4. получаем: 6/24 и 4/24 Теперь к наимееьшему общему знаменателю. это такое число, которое сравняет знаменатели, но оно должно быть самое маленькое их возможных (то есть чтобы и 6 делилось на это число и 4, но оно должно быть самое первое из возможных), а это число 12. получаем: 2/12 и 3/12 по аналогии остальное: в)6*8=48 8/48 и 6/48 наименьший знаменатель- 24 4/24 и 3/24 д) 15*10=150 20/150 и 45/150 наименьший знаменатель- 30 4/30 и 9/30
811. а)наименьший знаменатель- 4. первую дробь оставляем, вторую умножаем на 2 5/4 и 6/4 б)наименьший знаменатель 30 5/30 и 9/30 ж) знаменатель- 30 15/30 и 4/30
87³ + 32³ = (87 + 32)* (87² - 87*32 + 32²) = 119*(87² - 87*32 + 32²)
Так как 119 делится на 119, то и всё выражение делится на 119
Ч т д