х--длина ровного участка
у--длина подъема из А в В. если ехать из В в А,у будет длина спуска,а 0,7у длина
0,7у--длина спуска из А в В подъема. т.е. наоборот
24мин=2/5часа.
сост.уравн.
(х/25+у/15+0,7у/30)-(х/25+у/30+ 0,7у/15)=2/5.
у/15+0,7у-у/30-0,у/15=2/5
0,3у=12
у=40--т.е. длина подъема равна 40км.из А в В
40*0,7=28---длина спуска из А в В
40+28=68; 78-68=10км--ДЛИНА РОВНОГО УЧАСТКА ДОРОГИ.
10/25+28/15+40/30=3,18/30 или 3ч 36 мин. но мы не знаем где было больше подъемов из А в В или из В в А,поэтому делаем проверку
10/25+28/30+40/15=120/30=4часа. т.к.
значит 3ч,36мин
ответ:10км;3ч,36мин
Обозначим объём работы при рытье котлована за 1(единицу), а количество дней за которое вырывает один экскаватор котлован за (х) дней, тогда второй экскаватор вырывает котлован за (х-10) дней
Производительность работы первого экскаватора за один день равна:
1/х
второго экскаватора 1/(х-10)
А так как работая вместе экскаваторы вырывают котлован за 12 дней, составим уравнение:
1 : [1/(х)+1/(х-10)]=12
1 : [(х-10*1+ (х)*1)/(х*(х-10)]=12 -здесь мы привели к общему знаменателю
1: [(х-10+х)/(х²-10х)]=12
(х²-10х)/(2х-10)=12
х²-10х=12*(2х-10)
х²-10х=24х-120
х²-10х-24х+120+0
х²-34х+120=0
х1,2=(34+-D)/2*1
D=√(34²-4*1*120)=√(1156-480)=√676=26
х1,2=(34+-26)/2
х1=(34+26)/2=30 (дней-первый экскаватор вырывает котлован
х2=(34-26)/2=4 - не соответствует условию задачи
Второй экскаватор вырывает котлован за (х-10) или:
30-10=20 (дней)
ответ: Первый экскаватор вырывает котлован за 30дней, второй экскаватор за 20 дней