Исследование точек экстремума функции проведём по первой производной функции. Первая производная равна y'(x)=3*x²-6*x, её значения равны нулю х1=0 (производная меняет знак с + на минус, так что эта точка - точка локального максимума) х2=2 (производная меняет знак с минуса на =, так что эта точка - точка локального минимума). По второй производной исследуем выпуклости и вогнутости. Вторая производная y''(x)=6*x-6, она равна нулю при х3=1, при отрицательной производной у функции выпуклость вверх, при положительной - выпуклость вниз. Графики функций прилагаются.
Дано:
Пас. Поезд - 60 км/час;
Скор. Поезд - 90 км/час;
Едут на встречу, скор. поезд вышел через 30 минут после пас., расстояние между городами = 555км;
60 * 0.5 = 30 (км) — проехал пас. поезд до выезда скор. поезда;
60 + 90 = 150 (км/час) — скорость сближения поездов;
555 - 30 = 525 (км) — расстояние с которого началось сближение;
525 / 150 = 450/150 + 75/150 = 3 + 0.5 = 3.5 (час) — время за которое поезда встретятся;
3.5 * 60 + 30 = 3.5 * 60 + 0.5 * 60 = 4 * 60 = 240 (км) — расстояние от пункта А до точки встречи двух поездов.
ответ: 240 км
Объяснение:
вроде правильно