Контрольная работа No7 по теме ФУНКЦИИ И ГРАФИКИ І вариант 1. По графику функции y=f(x) укажите ее свойства. 5 Ол 2. Найдите область определения функции y = 16-х? 3. Проверьте функцию на четность у=х+ со 4. Постройте график функции y=x? - 5х +4 и укажите ее свойства
1) ОДЗ: 1≤х≤4 решение - графическое... нужно ведь не корни найти, а количество корней))) одна функция монотонно убывает, другая монотонно возрастает, они если и пересекутся, то всего лишь ОДИН раз. ответ: один корень 2) ОДЗ: х>0; x≠1 (log(5)x)³ + 3(log(5)x)² = -2*log(5)x использована формула перехода к логарифму по новому основанию (log(5)x)³ + 3(log(5)x)² + 2*log(5)x = 0 log(5)x*((log(5)x)² + 3*log(5)x + 2) = 0 1. log(5)x = 0 ---> x=1 ---посторонний корень (вне ОДЗ) в скобках --квадратное уравнение относительно log(5)x по т.Виета корни (-2) и (-1) log(5)x = -2 ---> x₁ = 0.04 log(5)x = -1 ---> x₂ = 0.2
При делении на 10 числа 21, 22 и 23 дают остатки 1, 2 и 3. 1^11 = 1 и число 21^11 оканчивается на 1. Степени двойки и тройки повторяются через каждые 4 шага (2, 4, 8, 16, 32 и 3, 9, 27, 81, 243). 12/4 = 3, поэтому 2^12 оканчивается на 6, так же, как и число 22^12. 13/4 = 3*4 +1, поэтому 3^13 оканчивается на 3, так же, как и число 23^13. Сумма остатков является числом, оканчивающимся на 1+6+3 = 10, т. е. на 0, а такое число кратно 10, следовательно все число 21^11+22^12+23^13 = 10k + 10, где k - натуральное, кратно 10.
решение - графическое...
нужно ведь не корни найти, а количество корней)))
одна функция монотонно убывает, другая монотонно возрастает,
они если и пересекутся, то всего лишь ОДИН раз.
ответ: один корень
2) ОДЗ: х>0; x≠1
(log(5)x)³ + 3(log(5)x)² = -2*log(5)x
использована формула перехода к логарифму по новому основанию
(log(5)x)³ + 3(log(5)x)² + 2*log(5)x = 0
log(5)x*((log(5)x)² + 3*log(5)x + 2) = 0
1. log(5)x = 0 ---> x=1 ---посторонний корень (вне ОДЗ)
в скобках --квадратное уравнение относительно log(5)x
по т.Виета корни (-2) и (-1)
log(5)x = -2 ---> x₁ = 0.04
log(5)x = -1 ---> x₂ = 0.2