М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
anastasia1231234
anastasia1231234
07.10.2021 09:00 •  Алгебра

Вариант 1
Вычислить (22/5 – 3,2)*33/4 –

Найти значение выражения 〖a^3 a〗^5/〖(a〗^(〖2)〗^3 ) при a=-2.

У выражение: a^3 〖b^2 5(b〖a^2)〗^(3 )〗^

Решить уравнение: (2х+1)2 – (2х+3)(2х-3)=0

У выражение: (a^2+2a+1)/(b^2-4)*(b+2)/(a+1) - a/(b+2)

Разложите на множители:
а): 16х4 – 25;
б) 14х4b- 21x3b2

Решите систему уравнений: х-2у=-1,
3х+у=11
8. Решить задачу:
Лодка плыла 4 часа по озеру и 5 часов по реке против течения, проплыв за это время 30 км. Скорость течения реки 3 км/ч. Найдите собственную скорость лодки.
9. Дана функция, заданная формулой у=0,5х-2.
1). Построить график функции.
2) Указать координаты точек пересечения графика функции с осями координат.
3)Принадлежат ли графику функции точки: А(-4,-4), В(8,6), С(6, 1)?

10. Решить задачу:
Магазин закупает цветочные горшки по оптовой цене 90 рублей за штуку. Торговая наценка составляет 20%. Какое наибольшее число таких горшков можно купить в этом магазине на 2000 рублей?

👇
Ответ:
oolesyoooolesy
oolesyoooolesy
07.10.2021

1. 9.9

2. что между ними?

4,4(49 оценок)
Открыть все ответы
Ответ:
sergeevan73
sergeevan73
07.10.2021
Метод интервалов – простой решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.
Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида  . Рисуем ось  и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось  на  N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».
4,6(13 оценок)
Ответ:
monika258
monika258
07.10.2021
Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное.
а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным.
(2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 =
2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.

b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа.
Покажем, что число не может быть и квадратом нечётного числа:
n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n
Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом?
(n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n
Не может.

Цельная и стройная запись решения:
n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2
Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
4,4(100 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ