

Замена: 

Имеем квадратичную функцию
, графиком которой является парабола с ветвями, направленными вверх.
Найдем возможные точки пересечения параболы с осью абсцисс.
Для этого решим квадратное уравнение:

Найдем дискриминант данного уравнения:

Имеем
, значит данное уравнение имеет ровно 2 корня:


Имеем две точки пересечения параболы с осью абсцисс.
Пусть
. Тогда
. Имеем неверное неравенство. Следовательно, при всех значениях параметра
имеем
.
Тогда квадратичная функция
будет меньше 0 при 
Последнее можно записать так:

Обратная замена:

Если
, то имеем: 
Решением такой системы неравенств является 
Если
, то имеем: 
Решением такой системы неравенств является 
Если
, то имеем: 
Решением такой системы неравенств является интервал 
, то нет корней;если
, то
если
, то
ответ: точки экстремума х1 и х2. К точке х2 слева функция возрастает, и вправо от точки х1 функция также возрастает. В промежутке х1 и х2 функция убывает.