- квадратичная функция. График парабола => Сначала находим вершину. Пусть А(m;n) - вершина параболы => m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д. 1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0 2)При у=10 х=-2; при у=6 х=0; при у=0 х=3 3)у наиб=n (в вершине) =8 4) Возрастает (большему значению х соответствует большее значение у) на промежутке (-∞;1]; убывает (большему значению х соответствует меньшее значение у) на промежутке [1;+∞) 5)Аргумент - х. При у=0 х=-1 и 3=> y>0 при х∈(-1;3) y<0 при x∈(-∞;-1)U(3;+∞)
Что такое |x| ? |x|=x при x≥0 и |x|=-x при x<0 поэтому разобьем систему на 2. 1. x<0 y=-x+4 y=-5/(x-2) Решаем -x+4=-5/(x-2) x≠2 (x-2)(-x+4)=-5 -x²+4x+2x-8+5=0 -x²+6x-3=0 x²-6x+3=0 D=6²-4*3=36+12=24 √D=2√6 x₁=(6-2√6)/2=3-√6 - отбрасываем, так как по условию x<0 x₂=(6+4√3)/2=3+2√3 - отбрасываем, так как по условию x<0 x=3-2√3 y=-3+2√4+4=1+2√3 2. x≥0 y=x+4 y=-5/(x-2) Решаем x+4=-5/(x-2) x≠2 (x-2)(x+4)=-5 x²+4x-2x-8+5=0 x²+2x-3=0 D=2²+4*3=16 √D=4 x₁=(-2-4)/2=-3 - отбрасываем, так как по условию x≥0 x₂=(-2+4)/2=1 x=1 y=1+4=5 ответ: x=1 y=5
Сначала находим вершину. Пусть А(m;n) - вершина параболы =>
m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д.
1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0
2)При у=10 х=-2; при у=6 х=0; при у=0 х=3
3)у наиб=n (в вершине) =8
4) Возрастает (большему значению х соответствует большее
значение у) на промежутке (-∞;1];
убывает (большему значению х соответствует меньшее
значение у) на промежутке [1;+∞)
5)Аргумент - х. При у=0 х=-1 и 3=>
y>0 при х∈(-1;3)
y<0 при x∈(-∞;-1)U(3;+∞)