решениями системы. При таком подходе задачу можно переформу-
лировать так: при каких значениях параметра a один из корней
квадратного трехчлена f (t) = t2 − 2(a + 1)t + a2 + 3a − 1 принад-
лежит интервалу (−1; 1), а второй корень расположен на числовой
оси вне этого интервала?
Из геометрической интерпретации решение последней задачи сво-
дится к решению неравенства
f (−1) · f (1) < 0 или (a2 + 5a + 2)(a2 + a − 2) < 0.
Решая последнее методом интервалов получим ответ.
√ √
ответ: a ∈ −5 − 17 ; −2 ∪ −5 + 17 ; 1
2 2
Задача 3.9. При каких значениях параметра a система
y = x2 − 2x
x2 + y 2 + a2 = 2x + 2ay имеет решения?
Решение. Перепишем исходную систему в виде
(x − 1)2 = y + 1
(x − 1)2 + (y − a)2 = 1.
Отсюда приходим к системе
(y − a)2 + y + 1 = 1 y 2 + (1 − 2a)y + a2 = 0
или
y+1 0 y −1.
Из геометрического смысла квадратного трехчлена следует, что
система будет иметь хотя бы одно решение, если совместна совокуп-
ность систем неравенств:
D = 1 − 4a 0
1
yв = a − 2 > −1
D = 1 − 4a 0
1
yв = a − 2 −1
f (−1) = a2 + 2a 0.
−1 < a 4 1
Решая системы неравенств, придем к совокупности 2
откуда получаем ответ. −2 a − 1 , 2
ответ: −2 a 4 .
пусть пешеход, вышедший из А, после встречи км. Тогда его скорость v1=S/t =
= 3x/2 км/час (40 мин = 2/3 час).
Пешеходу, вышедшему из В, после встречи пришлось пройти x + 2 км. Тогда его скорость
v2=S/t = 2(x+2)/3 км/час (1 час 30 мин = 3/2 час).
До встречи первый затратил время t = (x+2)/v1 = 2 * (x+2)/(3x).
До встречи второй затратил время t = x/v2 = 3 * x/(2(x+2)). Времена затраченные до встречи равны. Составляем уравнение.
(2x + 4)/3x = 3x/(2x+4)
(2x + 4)² = 9x²
либо 2x + 4 = 3x. x=4, либо
2x + 4 = -3x. x=-4/5 (не имеет смысла).
Искомое расстояние S = x + x + 2 = 4 + 4 + 2 = 10 км
первая цифра х
вторая цифра у
само число 10х+у
сумма цифр х+у
само число в 3,25 раза больше значения суммы его цифр 10х+у=3.25(х+у)
само число на 14 больше значения произведения его цифр 10х+у=ху+14
левые части равны--- приравняем правые части
3.25(х+у)=ху+14
по смыслу задачи х и у целые положительные числа и х<10 y< 10
простым перебором от 1,2,3...до 9
получаем пары чисел (х;y) = (2;6) (6;2)
это числа 26 и 62 --проверяем по условию
ответ 26 ; 62