

Замена: 

Имеем квадратичную функцию
, графиком которой является парабола с ветвями, направленными вверх.
Найдем возможные точки пересечения параболы с осью абсцисс.
Для этого решим квадратное уравнение:

Найдем дискриминант данного уравнения:

Имеем
, значит данное уравнение имеет ровно 2 корня:


Имеем две точки пересечения параболы с осью абсцисс.
Пусть
. Тогда
. Имеем неверное неравенство. Следовательно, при всех значениях параметра
имеем
.
Тогда квадратичная функция
будет меньше 0 при 
Последнее можно записать так:

Обратная замена:

Если
, то имеем: 
Решением такой системы неравенств является 
Если
, то имеем: 
Решением такой системы неравенств является 
Если
, то имеем: 
Решением такой системы неравенств является интервал 
, то нет корней;если
, то
если
, то
3 на корень из семи = под корнем 9*7=корень из 63
ближние числа из которых выделяется корень это корень из 49 и корень из 64. пишим:
корень из 49< корень из 63< корень из 64
7< корень из 63 < 8
у нас еще остается -5. пишим:
7-5<корень из 63 - 5<8-5
2 <корень из 63-5<3
произведение: 2*3=6.