Объяснение:1)
1)49m¹²n⁶p²
2)a²+2ab+b²
3)x²-2xy+y²
2)
1)x²+2xy+y²
2)c²-2cd+d²
3) 16+8a+a²
4)m²-6m+9
5)16x²+40xy+25y²
6)4b²-4b+1
Рассмотрим функцию у = -х² + 6х - 4. Это квадратичная пирамида, ветви вниз. Наивысшей точкой пирамиды (наибольшим значением у) будет значение координаты у вершины пирамиды.
Найдем координаты вершины пирамиды.
х0 = (-b/2a) = -6/(-2) = 3.
у0 = -3² + 6 * 3 - 4 = -9 + 18 - 4 = 5.
ответ: наибольшее значение функции равно 5.
Найдем производную функции:
у = -х² + 6х - 4.
у' = -2х + 6.
Найдем нули производной: у' = 0,
-2х + 6 = 0;
-2х = -6;
х = 3.
Определим знаки производной на каждом участке:
(-∞; 3) пусть х = 0; у'(0) = -2 * 0 + 6 = 6 (плюс, функция возрастает).
(3; +∞) пусть х = 4; у'(4) = -2 * 4 + 6 = -2 (минус, функция убывает).
Следовательно, х = 3 - это точка максимума функции.
Найдем максимальное значение функции в точке х = 3.
у(3) = -3² + 6 * 3 - 4 = -9 + 18 - 4 = 5.
ответ: наибольшее значение функции равно 5.
Объяснение:
(-7m⁶n³p)²=49m¹²n⁶p²
(a+b)²=a²+2ab+b²
(x-y)²=x²-2xy+y²
(x+y)²=x²+2xy+y²
(c-d)²=c²-2cd+d²
(4+a)²=16+8a+a²
(m-3)²=m²-6m+9
(4x+5y)²=16x²-40xy+25y²
(2b-1)²=4b²-4b+1