2 действительных корня
Объяснение:
(x-3)^2-16=0
x^2-6x+9-16=0
x^2-6x-7=0
D=(-6)^2-4*1*(-7)=36+28
D=64
Поскольку D>0, квадратное уравнение имеет 2 действительных корней.
46 бусин. ЭТО ПРИМЕР ВСЁ СПИСЫВАТЬ НЕ НАД
Объяснение:
Всего: 57
Красных: 18
Зелёных: 18
Голубых: 15
Чёрных + белых: 57 - 18 - 18 - 15 = 6
Самая неудобная ситуация складывается, если мы достаём 13 красных, 13 зелёных, 13 голубых и 6 чёрных с белыми бусин. Это максимальное количество бусин, которое можно достать, при этом не получив 14 бусин одного цвета. Стоит достать ещё одну бусину, и мы можем быть уверены, что будет минимум 1 цвет минимум 14 бусин, а именно, нужно достать:
13 + 13 + 13 + 6 + 1 = 46 бусин.
ответ: 46 бусин.
y = 7x - 6sinx + 8
y' = 7 - 6cosx
7 - 6cosx = 0
6cosx = 7
cosx = 7/6, 7/6 больше 1, поэтому корней нет
Раз критических точек нет, то подставляем только границы промежутка:
y(-π/2) = 7*(-π/2) - 6sin(-π/2) + 8 = -7π/2 + 6 + 8 = -7π/2 + 14 = (28-7π)/2
y(0) = 7*0 + sin0 + 8 = 8
Сравним 8 и (28-7π)/2, чтобы определить наибольшее значение:
8 - (28-7π)/2 = (16 - 28 + 7π)/2 = (7π - 12)/2 ≈ (21 - 12)/2 = 9/2 > 0
8 - (28-7π)/2 > 0
8 > (28-7π)/2
ответ: наибольшее значение функции y = 7x - 6sinx + 8 на отрезке [-π/2; 0] равно 8
x^2-6x+9-16=0 x1=-7 x2=1