Для того, чтобы найти функцию, обратную данной. надо х и у поменять местами, и вновь выразить у через х: y = (2x-1) / (x+3) x = (2y-1) / (y+3) - выражаем теперь у через х: x(y+3) = 2y - 1 y(2-x) = 3x+1 y = (3x+1) / (2-x) - обратная функция. Теперь необходимо ее построить. 1) Найти точки экстремума и (или) точки перегиба: y' = [3*(2-x) + (3x+1) ] / (2-x)^2 = [6-3x+3x+1] / (2-x)^2 = 7/(2-x)^2 - производная всегда положительная, значит функция у возрастает на всей области определения. 2) ОДЗ: 2-x # 0, x # 2. Значит прямая х=2 - ассимптота функции у. 3) Нули функции: y=0, 3x+1=0, x=-1/3. Точка (-1/3; 0). 4) Пересечение с осью Оу: х=0, у=1/2. Точка (0; 1/2)
В1 при х=-0.5 у=-4 в вершине параболы наименьшее зн-ние (ветки параболы смотрят вверх) В2 при х=3 у=8 в вершине параболы наибольшее зн-ние (ветки параболы смотрят вниз) С1. усл-вие не совсем ясно - корень из 3х это как множитель при n? Если да, то наименьшее зн-ние в вершине параболы, ветки смотрят вверх х= у=-5
_______________________ Вершина параболы находится по формуле y найти можно, подставив х в изначальную ф-цию Куда ветки направлены показывает коэффициент перед , если он положительный - ветки вверх, отриц. - ветки вниз
(2х-1) (2х+1)=(х+3)^2+х(3х-1)
4х^2 - 1 = х^2 + 6х + 9 + 3х^2 - х
4х^2 - 1 = 4х^2 + 5х + 9
-1 = 5х + 9
-5х = 9 + 1
-5х = 10
х = -2
проверка:
(2(-2)-1)(2(-2)+1)=(-2+3)^2+(-2)(3(-2)-1)
(-4 - 1)(-4 + 1) = 1^2 + (-2)(-6 - 1)
-5(-3) = 1 + (-2)(-7)
15 = 1 + 14
15 = 15
Объяснение:
^ - степень