Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.] Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см. Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.
Нарисуй задачку на бумаге и сама увидишь как все просто.
2)сумма смежных углов=180⁰
пусть х-первый угол,тогда х+20-второй.
х+х+20=180
2х=160
х=80⁰-первый угол.
а)80⁰+20⁰=100⁰-второй угол.
3)Вариант 1:
< ВОД = < СОА вертикальные углы
Пусть < СОА = x
Тогда < АОК = 118 -x
< COA + < AOK = 180
x + (118 -x) + (118-x) = 180
x = 56 градусов--- это и есть угол ВОД
Вариант 2:
Обозначь углы AOK и KOD за х, а угол COB за 2х
COD-KOD=COK
180-х=118
Х=62
COD-COB=BOD
180-(62•2)=56