Чтобы найти синус и косинус угла в прямоугольном треугольнике, нужно вспомнить определения. Синус угла равен отношению противоположного катета к гипотенузе. Косинус угла равен отношению прилежащего катета к гипотенузе.
Прямоугольный треугольник
Если у нас есть треугольник ABC, рисунок выше, для которого С- прямой угол, то сторонами BC и AC будут катеты, а сторона AB - гипотенуза. Следовательно, по определению, синус угла ABC равен отношению катета АС к гипотенузе: синус угла ABC=ACAB и синус угла BAC=BCAB.
косинус угла ABC=BCAB и косинус угла BAC=ACAB.
Чаще всего известно лишь часть данных, например катет и угол, нужно выразить неизвестную величину. Подумайте, как это сделать.
Пример 1. Вычислим синус по двум катетам.
Берем тот же треугольник ACB с прямым углом С в котором мы знаем катеты: BC=3, AC=4. Для вычисления синуса угла с необходимо разделить катет на гипотенузу: sin∠BAC=BCAB.
Гипотенузу вычислим из теоремы Пифагора: AC2+BC2=AB2 9+16=25 AB=5 откуда синус равен:
sin∠BAC=35
Радиус проведённый в точку касания перпендикулярен касательной.
В четырёхугольнике сумма углов равна 360°.
В четырёхугольнике EOFC:
∠ECF = 360°-∠EOF-∠CEO-∠CFO = 360°-102°-90°-90° = 78°.
В треугольнике сумма углов равна 180°.
В ΔABC:
∠BAC = 180°-∠ABC-∠BCA = 180°-90°-78° = 12°
В четырёхугольнике BEOD:
∠EOD = 360°-∠ODB-∠DBE-∠BEO = 360°-90°-90°-90° = 90°
В четырёхугольнике DOFA:
∠DOF = 360°-∠OFA-∠FAD-∠ADO = 360°-90°-12°-90° = 168°
ответ: ∠A=12°, ∠C=78°, ∠EOD=90° и ∠FOD=168°.
Объяснение:
Не знаю, может и не правильно.
-4 354
Объяснение:
это правильно ответ может быть