Объяснение:
а) х² - 8х = 0, х·(х -8) = 0 ⇒ х =0 или х - 8 = 0; х =0 или х = 8.
б. 6х² = 12; х² = 12÷6, х² = 2, х = ±√2
в) 3x² – 48 = 0, 3x²= 48, x² = 48÷3,x² = 16, х = ± 4
г) 6x² – 5x + 1 = 0;D = b²- 4ac = 25 - 4·6 = 24; x = -b ±√D/2a
x1 = 5+√1/12 = 5+1/12 = 6/12 = 1/2, x2 = 5-1/12 = 4/12 = 1/3
д) x² –16x + 71 = 0.D = b²- 4ac =256 - 4·1·71= 256 -284 =-28 - меньше 0 ⇒∅
е) (4x – 3)2 + (3х – 1)(3х+1) = 9
8х -6 +(9х²-3х+3х-1)=9; 8х -6+(9х²-1) =9; 8х -6 +9х²-1-9 = 0; 9х²+8х-16 =0
D = b²- 4ac = 64+4·9·16= 64+576 =640
х1 = -8+√640/18/= -8+8√10/18; х2 = -8-8√10/18
2*.При яких значеннях а рівняння аx² + аХ + 36 = 0 має один корінь?
D = 0⇒ а²-4·а·36 = 0, а²-144 = 0, а²=144, а = ±12
найдем дискриминант квадратного уравнения:
d = b² - 4ac = (-16)² - 4·1·48 = 256 - 192 = 64
так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
х₁ = 4, х₂ = 12
12² + (12-7)² = 13² - проверяем
144 + 25 = 169 и 13² = 169 13 больше 12 на 1, а 12 больше 5 на 7
Треугольник MLN - равнобедренный, т.к. ML=MN, значит уголMNL=уголMLN. (свойство углов при основании равнобедренного треугольника).
Треугольник LNH - прямоугольный, т.к. LH - перпендикуляр к MN, т.е. уголLHN=90, значит уголHNL+уголHLN=90 (свойство острых углов прямоугольного треугольника).
уголHNL=уголMNL=уголMLN,
уголMLN+уголHLN=90,
уголHLN=90-уголMLN,
cos уголHLN=cos(90-уголMLN)=sin уголMLN=3/4,
cos уголHLN=LH/LN (по определению косинуса угла прямоуголного треугольника).
LH=LN*cos уголHLN=4√7*3/4=3√7