х ∈ (-0,5; +∞)
Объяснение:
|2x+5|-1<6x-2
1) 2x+5 ≥ 0 (2x ≥ 5 или х ≥ 2,5 ) ⇒ |2x+5| = 2x+5
|2x+5|-1<6x-2 ⇒ 2x+5 -1<6x-2
2х + 4 < 6x - 2
4 + 2 < 6x - 2x
6 < 4x
6/4 < x
1,5 < x или х > 1,5 (ОДЗ: х≥ 2,5) ⇒ решение данной части: х ∈ [2,5; +∞)
2) 2x+5 < 0 (2x < 5 или х < 2,5 ) ⇒ |2x+5| = -(2x+5)
|2x+5|-1<6x-2 ⇒ -(2x+5) -1<6x-2
-2x-5 -1<6x-2
-2х -6 < 6x - 2
-6 + 2 < 6x + 2x
-4 < 8x
-4/8 < x
-0,5 < x или х > -0,5 (ОДЗ: х < 2,5) ⇒ решение данной части: x ∈ (-0,5;2,5)
объединяя решение первой части (х ∈ [2,5; +∞)) и второй (x ∈ (-0,5;2,5)) получаем общее решение х ∈ (-0,5; +∞)
Через 18 минут
Объяснение:
после 1 минуты 1 очко - 2⁰=1
после 2 минуты 1*2=2 очка = 2¹
после 3 - 4 очка =2²
после 4 - 8 очков =2³
после 5 - 16 очков = 2⁴
после n минут 2ⁿ⁻¹ очков
Можно заметить что очки начисляются как 2 в степени (минута игры -1)
Соответственно, логарифмируя конечную цифру 100000 по основанию 2 получаем результат - 16,61. То есть, результат 100000 будет достигнут через (16,61+1)=17,61 минут с начала игры. Но, так как очки начисляются только по истечении целой минуты, то после 17 минут игры 100000 еще не будет,а после 18 минут - будет результат превышающий 100000.
Проверяем:
2¹⁷⁻¹ = 65536 очков после 17 минут игры
2¹⁸⁻¹ = 131072 очка после 18 минут игры.
Відповідь:
4а-5в+2х(4а-5в)= (4а-5в)(1+2х)