с дискриминанта - 8 класс).
Решим квадратное уравнение через дискриминант. Если , то уравнение имеет 2 корня, если , то уравнение не имеет корней. (Если , то уравнение имеет 1 корень)
Поскольку , то данное квадратное уравнение имеет 2 корня. Найдём эти корни по формуле.
с группировки - 7 класс).
Представим число в виде двух чисел: и . А затем сгрупируем по два члена в скобки и вынесен за скобки общий множитель.
По правилу если произведение равно нулю, то хотя бы один из данных множителей будет равняться нулю. Рассмотрим 2 единственных случая.
ответ: .Задание #4.с дискриминанта - 8 класс).
Для начала нужно в правой части уравнения умножить многочлен на многочлен, а затем перенести все члены из правой части в левую со сменой знака, а в правой части поставим .
Найдём дискриминант данного квадратного уравнения. Если , то уравнение имеет 2 корня, если , то уравнение не имеет корней. (Если , то уравнение имеет 1 корень)
Поскольку , то данное квадратное уравнение имеет 2 корня. Найдём эти корни по формуле.
с группировки - 7 класс).
Представим число в виде двух чисел: и . А затем сгрупируем по два члена в скобки и вынесен за скобки общий множитель.
По правилу если произведение равно нулю, то хотя бы один из данных множителей будет равняться нулю. Рассмотрим 2 единственных случая.
ответ: .Задание #7.Сделаем из данного уравнения систему и найдём дискриминант каждого нового уравнения. Если , то уравнение имеет 2 корня, если , то уравнение не имеет корней. (Если , то уравнение имеет 1 корень)
Т.к. , то данное уравнение НЕ ИМЕЕТ КОРНЕЙ! Теперь находим дискриминант второго квадратного уравнения:
Т.к. , то данное уравнение имеет 2 корня. Решим данное уравнение по формуле.
ответ: уравнение имеет 2 корня.Задание #9.Сначала находим неизвестный множитель, деля произведение на известный множитель, а затем находим корень(-и) данного уравнения.
ответ:
1)sin229° + cos319° + ctg229° * ctg319°=
=sin229°+cos(90°+229°)+ctg(49°+180°)*ctg(139°+180°)
Используя формулу cos(90°+t)=-sint, преобразуем выражение cos(90°+229°)=
=-sin229°
Упростим ctg(49°+180°)=ctg49° и
ctg(139°+180°)=ctg139° ,используя
ctg=(t+k*180°)=ctgt ,где k принадлежит z
В итоге получаем:
sin229°-sin229°+ctg49° * ctg139°=
=ctg49° * ctg139°≈-1
2)( -18cos335°/cos155°*cos60° )-16=
=( -18cos(180°+155°)/cos155°*1/2 )-16=
=( -18cos*(-cos155°)/cos155°*1/2 )-16=
=( -18*-1 / 1*1/2 )-16=( 18/ 1/2 )-16=
=36-16=20