Пусть двузначное число N состоит из х десятков и у единиц, т.е. число имеет вид ху, (где х ≠ 0, иначе число было бы однозначным)
и оно может быть записано как сумма разрядных слагаемых N = 10х + у
Тогда составим систему
( х + у)*5 = 10х + у
2.25*ху = 10х + у
5х + 5у = 10х + у
5х = 4у
у = 5х /4
Тогда, подставив у во второе уравнение, получим:
9/4*х*5х /4 = 10х + 5х /4
9х/4* 5х/4 = 10х + 5х/4 |*16
9х* 5х = 160х + 20х
45х² = 180х | : 45
х² = 4х | :х (х ≠ 0)
х = 4
у = 5х /4 = 5*4 /4 = 5
ответ: это число 45.
ответ:Нам нужно разложить на множители выражение ac - ad - 5bc + 5bd для этого сгруппируем попарно первое со вторым и третье с четвертым слагаемые и вынесем общий множитель за скобки.
ac - ad - 5bc + 5bd = (ac - ad) - (5bc - 5bd);
Из первой скобки вынесем a, а из второй 5b, получим:
(ac - ad) - (5bc - 5bd) = a(c - d) - 5b(c - d).
Рассмотрим полученное выражение. В результате мы получили разность двух выражений каждое из которых содержит скобку (c - d), вынесем ее как общий множитель.
a(c - d) - 5b(c - d) = (с - d)(a - 5b).
ответ: (с - d)(a - 5b).
Объяснение:
1) a(p²-x²)=a(p-x)(p+x)
2) 5a(1-a²)=5a(1-a(1+a)
3) 3(9x²-25)=3(3x-5)(3x+5)
4) (x²-25)(x²+25)=(x-5)(x+5)(x²+25)
5) 5(4x²-1)=5(2x-1)(2x+1)
1) x⁴(5x-1)=0
x=0
5x-1=0
x=0,2
2) x³-4x=2
x(x²-4)=2
x(x-2)(x+2)-2=0