247/16-х время против течения
247/16+х время по течению, оно на 6ч меньше, чем время против течения.
Составляем уравнение и решаем его
247/16-х - (247/16+х)=6 приводим к общему знаменателю(16+х)(16-х), получаем
247(16+х ) - 247(16-х) = 6(16+х)(16-х)=6(256-х²)
247(16+х-16+х)=1536-6х²
247*2х=1536-6х²
делим на 2
247х=768-3х²
3х²+247х-768=0
Находим корни квадратного уравнения , получаем
Х₁=( -247- √ 2472+4*3*768):2*3= (-247-265):6= отриц.число, скорость течения не может быть отриц. По модулю
Х₂=( -247+ √ 2472+4*3*768):2*3= (-247+265):6=18:6=3 км/ч5
Объяснение:
Пусть на дом задано n задач, тогда всего комбинаций решенных задач 2
n
(каждую из
задач ученик может решить или не решить). Вычтем из этих комбинаций комбинации,
когда решено менее 3 задач: 1 комбинация, когда ничего не решено; n комбинаций,
когда решена 1 задача; n(n−1)
2
, когда решено две задачи (первую решенную можно
выбрать , вторую (n − 1), при этом нам не важен порядок, поэтому делим
на 2. Итого получаем, что уникальных комбинаций, за которые учитель не поставит
оценку «2»: 2
n−1−n−
n(n−1)
2
. Для того, чтобы кто-нибудь обязательно получил оценку
«2», это число должно быть меньше, чем число учеников в классе (чтобы у каких-то
двух комбинация задач совпадала). Получаем неравенство: 2
n − 1 − n −
n(n−1)
2 < 30
наибольшее n, удовлетворяющее этому неравенству это n = 5.
ответ: 5 задач
-1+k/2-k/3=111/3
-6+3k-2k=222
-6+k=222
k=222+6
k=228