Прямые х=1 и у=-2 пересекаются в точке с координатами (1,-2) Это будет точка А.
Прямая х=1 и прямая у=-2х+6 пересекаются в точке с координатами х=1 у=-2*1+6+=4, т.е. (1,4) Это будет точка В.
Прямая у=-2 и прямая у=-2х+6 пересекаются в точке с координатами у=-2, а х находим из уравнения
-2=-2х+6, х=4 Координаты (4,-2) Это будет точка С.
Получился прямоугольный треугольник. Катет АВ - вертикальный его длина разность координат у у точек А и В: 4-(-2)=6, катет АС - горизонтальный, его длина разность координат х у точек А и С: 4-1=3
Площадь треугольника 6*3/2=9
Дано функцію f(x) = (x^2-8x)/(x+1)
Знаходимо найбільше і найменше значення даної функції на проміжку [-5,-2].
f(-5) = ((-5)^2-8*(-5))/(-5+1) = 65/(-4) = -16,25.
f(-2) = ((-2)^2-8*(-2))/(-2+1) = 20/(-1) = -20.
Визначаємо точки екстремуму даної функції.
Знаходимо первісну:
f'(x) = (2x-8)*(x+1) - 1*(x^2-8x))/((x+1)^2) = (x^2 + 2x - 8)/((x + 1)^2).
Прирівнюємо їі до 0 (достатьно чисельник):
x^2 + 2x - 8 = 0, Д = 4+4*8 = 36, х1 = (-2 - 6)/2 = -4, х2 = (-2 + 6)/2 = 2.
Знаходимо знаки первісної:
х = -5 -4 1 2 3
y' = 0,4375 0 -1,25 0 0,4375 .
У точці х = -4 маємо максимум функції,
f(-4) = ((-4)^2-8*(-4))/(-4+1) = 48/(-3) = -16.
Відповідь:
- найбільше значення даної функції на проміжку [-5,-2] дорівнює -16,
- найменше значення даної функції на проміжку [-5,-2] дорівнює -20,
- максимум функції у точці х = -4,
- мінімум функції у точці х = 2.
ответ на фото надеюсь вам успехов