V - знак квадратного корня V(5x+7) - V(x+4) =4x+3 ОДЗ: {5x+7>=0 {x+4>=0
{5x>= -7 {x>= -4
{x>=-7/5 {x>= -4
Чтобы избавиться от рациональности, возведем все члены уравнения в квадрат, но для этого правая часть уравнения должна быть положительной: 4x+3>=0; x>= -3/4 У нас получилась следующая ОДЗ: {x>= -7/5 {x>= -4 {x>= -3/4 Решением этой системы будет промежуток: [-3/4; + бесконечность) Итак, возводим в квадрат: (5x+7)^2 - (x+4)^2 = (4x+3)^2 25x^2+70x+49-x^2-8x-16=16x^2+24x+9 24x^2+62x+33= 16x^2+24x+9 24x^2+62x+33-16x^2-24x-9=0 8x^2+38x+24=0 |:2 4x^2+19x+12=0 D= 19^2-4*4*12=169 x1=(-19-13)/8=-4 - это посторонний корень, т.к. не входит в промежуток [-3/4; + беск.) x2=(-19+13)/8= -3/4 Получается, что уравнение имеет один корень => k=1 Корень x=-3/4 принадлежит интервалу (-1;0), значит q=-3/4 Решим уравнение 5k+4q= 5*1+4*(-3/4)=5-3=2 ответ:2
Нет, не может. Почему же? Для начала озвучу правило: корень парной степени из отрицательного числа не добывается, именно поэтому вводится понятие арифметического корня. Но что такое вообще корень? Выражение: найти квадратный корень из числа а, это значит найти такое число, которое бы при умножении самого на себя давало бы а. И так для любой степени. Но почему же все-таки не добывается корень парной степени из отрицательного числа? Продемонстрируем это на простом примере: Например у нас есть уравнение: х^2=25. Решением этого уравнения будет 5 и -5, поскольку оба эти числа будут давать в квадрате 25 (5*5=25, -5*(-5)=25) А теперь решим такое уравнение: sqrt{x}=5 (sqrt - обозначение корня) решение данного уравнения будет 25, поскольку корень из 25 - 5, потому что 5 в квадрате даёт 25 (5*5=25). И решим такое уравнение: sqrt{25}=x, ответ: х=5. Но почему же не +-5? Ведь -5 в квадрате тоже даёт 25. Но нет, именно для этого вводится понятие арифметического корня. Подкоренное выражение не может быть с минусом, для парной степени. Потому что нету такого числа, что умножилось бы само на себя, и дало число с минусом. То у нас два варианта: либо число положительное либо отрицательное. И в ЛЮБОМ случае, при умножении его на себя парное количество раз, будет получатся ПОЛОЖИТЕЛЬНОЕ число: 2*2*2*2=16 (2^4) -2*(-2)*(-2)*(-2)=16=2^4. Поэтому число под корнем не может быть отрицательным, а так же подкопанное выражение не может быть отрицательным. А вот для корней с непарным показателей число может быть и отрицательным: sqrt[3]{-8}=-2 (-2*(-2)*(-2)=-8). Тут у нас может подучился отрицательное число, по сколько отрицательное число, умноженное на себя непарное количество раз, в итоге окажется отрицательным числом. И так, подитожим данным определением: Арифметический корень из неотрицательного числа а - это неотрицательное число, при возведении которого в ту степень, которую имеет корень, получился число а. Иначе говоря: Корень n-ой степени из числа а - это число, n-ая степень которого равна а. Учитывая что это неотрицательное число для корня парной степени. sqrt{-25}=... По определению, ответом должно быть такое число, квадрат которого равен числу под корнем. Но разве есть такое число, квадрат которого даёт отрицательное число? Нет. Квадрат всегда положителен, и все степени парного числа. Я это уже показал на примере. {При умножении числа а на само себя, парное количество раз, мы всегда будет получать неотрицательное число.
1)косинус- отношение прилежащего катета к гипотенузе.
cos в= 13\65
ответ: 13\65
2. 1) по теореме пифагора ав=√144+81=√225=15см
2)синус- отношение противолежащего катета к гипотенузе.
sin в= 12\15= 4\5
3) тангенс- отношение противолежащего катета к прилежащему.
tg в= 12\9= 4\3
4) cos в= 9\15= 3\5= 0,6
ответ: 4\5, 0,6, 4\3
Объяснение: ДАЙ ЛУДТШИЙ